期刊文献+

反复镦压工艺制备超细晶铜的组织与性能 被引量:7

Microstructure and property of ultra-fine grained copper produced by cyclic channel die compression process
下载PDF
导出
摘要 介绍了反复镦压工艺的原理、路线及特点,并研究了纯铜反复镦压后的组织、硬度及拉伸性能。结果表明,反复镦压可在不改变试样形状和尺寸的情况下累积很大的应变。退火态纯铜经多道次镦压后晶粒明显细化。3道次镦压前,纯铜的平均显微硬度随应变的增加快速增加,随镦压次数的进一步增加,硬度上升的幅度下降。多道次镦压后纯铜的抗拉强度明显提高,从退火态的198.5 MPa提高到最高约488.8 MPa。镦压后纯铜的断后伸长率明显下降,但仍在15%以上,其断裂性质仍属韧性断裂。研究结果说明反复镦压是一种有应用前景的制备块体细晶材料的方法。 The principle,processing routes and characteristics of cyclic channel die compression(CCDC) process were introduced.Microstructure,microhardness and tensile property of pure copper subjected to CCDC process were investigated.The results show that large strain can be accumulated through CCDC process without changing the size and shape of the specimen.The grains of as-annealed copper are refined obviously after multi-pass CCDC.The average Vickers microhardness increases rapidly before 3 passes CCDC and then becomes stable with further increasing passes of CCDC.Ultimate tensile strength of the pure copper by CCDC is improved from initial 198.5 MPa to the maximum value of 488.8 MPa.However,its elongation to failure decreases after CCDC,but the elongation is still over 15%.Fracture mechanism of pure copper after CCDC belongs to ductile fracture.The investigation shows that CCDC is a promising method for producing bulk ultra-fine grained materials.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2011年第12期89-93,共5页 Transactions of Materials and Heat Treatment
基金 镇江市科技成果转化项目(cz2008009) 江苏科技大学本科生创新计划专项经费资助(BKCX20100605)
关键词 反复镦压 纯铜 超细晶 硬度 拉伸性能 cyclic channel die compression pure copper ultra-fine grain microhardness tensile property
  • 相关文献

参考文献17

  • 1Valiev R Z, lslamgaliev R K,Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [ J]. Progress in Materials Science,2000,45(2) :103 - 189.
  • 2Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [ J ]. Progress in Materials Science, 2006,51 (7) :881 -981.
  • 3Kai M, Horita Z, Langdon T G. Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion [ J ]. Materials Science and Engineering A ,2008,488 ( 1 - 2 ) : 117 - 124.
  • 4Shaarbaf M, Toroghinejad M R. Nano-grained copper strip produced by accumulative roll bonding process [ J]. Materials Science and Engineering A, 2008,473 (1 -2) :28 -33.
  • 5Xing J,Yang X Y, Miura H,et al. Grain refinement in Magnesium alloy AZ31 during multidirectional forging under decreasing temperature conditions [ J ]. Materials Science Forum ,2005,488 -489:597 - 600.
  • 6Miura H, Nakao Y, Sakai T. Enhanced grain refinement by mechanical twinning in a bulk Cu-30mass% Zn during muhi-dlrectional forging [ J]. Materials Trartsaetions ,2007,48 (9) :2539 - 2541.
  • 7石凤健,王雷刚,王海龙,汪建敏.等径角挤压工艺对固溶状态CuCrZr合金性能的影响[J].金属热处理,2007,32(1):81-83. 被引量:4
  • 8石凤健,王雷刚,王海龙,汪建敏.等径角挤压制备CuCrZr合金的抗软化性能[J].材料热处理学报,2009,30(6):94-97. 被引量:2
  • 9罗许,史庆南,刘韶华,陈玉良,王效琪.6061铝合金超细晶制备及其组织性能的研究[J].材料热处理学报,2009,30(3):71-75. 被引量:11
  • 10Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [ J ]. CIRP Annals-Manufacturing Technology,2008, 57(2) :716 -735.

二级参考文献33

  • 1李伟,刘平,苏娟华,刘勇,康布熙,田保红.时效与形变对Cu-Cr-Zr合金性能的影响[J].特种铸造及有色合金,2004,24(6):25-26. 被引量:22
  • 2李伟,刘平,刘勇,田保红.微量稀土元素对Cu-Cr-Zr合金接触线抗软化性能的影响[J].金属热处理,2005,30(2):38-40. 被引量:12
  • 3石凤健,王雷刚,王海龙,汪建敏.等径角挤压工艺对固溶状态CuCrZr合金性能的影响[J].金属热处理,2007,32(1):81-83. 被引量:4
  • 4G|eiter H. Nanocrystalline materials[J]. Key Eng Mat, 1987,13(1) : 150.
  • 5Hartmann O, Wappling R, Ekstrom M, et al. Positive muons in nanocrystalline transition metals diffusion and magnetic nanostructure[J]. Nanostruetured Materials, 1999,12(6) :943 - 946.
  • 6Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulknanostructured materials from severe plastic deformation[ J ]. Progress in Material Science,2000,45(2):103 - 189.
  • 7Lu K. Nanocrystalline metals crystallized from amorphous solids : Nanocrystallization, structure, and properties[J]. Mater Sci Eng Reports, 1996,16(4) : 161 - 221.
  • 8Ferrasse S, Segal V M. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[ J]. Metallurgical and Materials Trasanctions A, 1997,28 : 1047 - 1057.
  • 9Wu Y,Baker I.Experimental study of equal channel angular extrusion[ Jl. Scripta Materilia, 1997,37(4) :437.
  • 10Yoshinori Iwahashi ,Jingtao Wang, Zenji Horita, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia, 1996,35(2) : 143 - 146.

共引文献14

同被引文献38

  • 1詹肇麟,刘安强,刘忠,刘建雄,李莉.大变形镦挤制备超细纯Cu组织变化的研究[J].稀有金属材料与工程,2012,41(S2):14-18. 被引量:2
  • 2汪建敏,许晓静,石凤健,姜银方,陈康敏.等径角挤压获得超细晶铜的研究[J].热加工工艺,2004,33(7):6-7. 被引量:25
  • 3郭强,严红革,陈振华,张辉.多向锻造技术研究进展[J].材料导报,2007,21(2):106-108. 被引量:44
  • 4Park S S, Garmestani H, Bae G T et al. Materials Science and EngineeringA[J], 2006, 435-436:687.
  • 5Braun R. Materials Characterization[J], 2006, 56(12): 85.
  • 6Braun R, Roth G. Materials Forum[J], 2006, 426(1-2): 250.
  • 7Chaudhuri J, Tan Y M, Patni K et al. Journal of Materials Engineering and Performance[J], 1992, 1 : 91.
  • 8ZhangFubao(张福豹).Thesis for Master(硕士论文)[D].Zhenjiang:Jiangsu University,2011.
  • 9Ghosh A K, CalifT O. US Patent, 4721537A[P]. 1988.
  • 10Parimi A K, Robi P S, Dwivedy S K. Materials & Design[J], 2011, 32(4): 1948.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部