期刊文献+

一种新的视频监控图像拼接算法 被引量:3

Image mosaic algorithm for video surveillance
下载PDF
导出
摘要 视频监控常常采用多个静止的摄像机监控视场范围比较大的区域,本文研究了多个摄像机的视频图像合成算法。对于多个静止的摄像机,利用相位相关算法估计输入视频的相应第一帧重叠区域,并在重叠区域内进行Harris角点检测和匹配,以加快角点匹配的速度并且提高匹配的稳健性;对于非首帧的视频,也只需在第一帧估计的重叠区域内进行角点检测。使用RANSAC算法去除外点,计算各个摄像机间的变换矩阵,并将多个视频序列合成一个大视频序列。与传统算法相比,该算法提高了运行速度,增加了实用性。 Multiple static cameras is often used to monitor activities over a wide area in video surveillance system. This paper studies the video compositing algorithm of multiple static cameras. For multiple static cameras, phase correlation was used to roughly compute the translation offset between the first corresponding frames of two video streams, so corner match procedure was speeded up and matching stability was inproved. Then, in the overlapped region, Harris method was used to detect and register corners. For the other frames, estimated in the first frame only within the region of overlap corner detection. RANSAC algorithm was used to eliminate outliers to ensure effectiveness of the matched corner pairs. Then it computes the homography of each camera, and a large video sequence is composited from the multiple video sources. Invalid parameters were verified by the translation offset to make Levenberg-Marquardt optimization more successful.
出处 《电子测试》 2011年第12期8-11,15,共5页 Electronic Test
关键词 视频拼接 视频监控 相位相关法 HARRIS video mosaicing video surveillance phase correlation Harris
  • 相关文献

参考文献8

  • 1李庆忠,耿晓玲,王冰.大视场视频全景图快速生成方法[J].计算机工程,2009,35(22):170-172. 被引量:10
  • 2Le Lu. Real-time Video Mosaicing with Adaptive Parametric Warping[R].Technical Report 2003-XX-CIRL- CS-JHU, 2003:1-18.
  • 3Etienne vincenet,Robert Laganiere. Matching Feature Points in Stereo Pairs: A Comparative Study of Some Matching Strategies[J]. Machine Graphics and Vision, 2001, 10(3):237-259.
  • 4C. Harris,M. Stephens.A Combined Comer and Edge Detector[C]. In AlveyVision Conference, Manchester, UK, 1988:147-151.
  • 5H. S. Sawhney, R. Kumar, G.Gendel, et al. Video- Brush: Experiences with consumer video mosaicing[A]. Proceedings of the Workshop on Applications of Computer Vision[C]. Princeton, 1998:56-62.
  • 6苗立刚.视频监控中的图像拼接与合成算法研究[J].仪器仪表学报,2009,30(4):857-861. 被引量:33
  • 7M. A. Fischler, R. C. Bolles. Random sample consensus: A paradigmfor model fitting with applications to image analysis and automated cartography[J].Communications of the ACM, 1981,24 (6).
  • 8邓军,甘新胜.一种基于不变特征的视频拼接方法[J].指挥控制与仿真,2009,31(3):98-100. 被引量:2

二级参考文献27

  • 1蔡铮,汪源源,王威琪.一种改进的基于形变方法的图像拼接算法[J].仪器仪表学报,2006,27(z1):721-723. 被引量:3
  • 2HSU S,SAWHNEY H S,KUMAR R.Automated mosaics via topology inference[J].IEEE Computer Graphics and Applications,2002,22(2):44-54.
  • 3SAWHNEY H S,KUMAR R,GENDEL G,et al.VideoBrush:Experiences with consumer video mosaicing[A].Proceedings of the Workshop on Applications of Computer Vision[C].Princeton,1998:56-62.
  • 4BROWN M,LOWE D G.Recognising panoramas[A].Proceedings of the 9th International Conference on Computer Vision[C].Nice,France,2003:1218-1225.
  • 5STAUFFER C,GRIMSON W E L.Adaptive background mixture models for real-time tracking[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].1999,(2):246-252.
  • 6KADEWTRAKUPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[A].Proceedings of 2nd European Workshop on Advanced Video-Based Surveillance Systems[C].Kingston,UK,2001:149-158.
  • 7LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8DAVIS J.Mosaics of scenes with moving objects[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Santa Barbara,1998:354-360.
  • 9PRATI A,SEGHEDONI F,CUCCHIARA R.Fast dynamic mosaicing and person following[A].Proceedings of International Conference on Pattern Recognition[C].Hong Kong,2006,(4):920-923.
  • 10CUCCHIARA R,PRATI A,VEZZANI R.Advanced video surveillance with pan tilt zoom cameras[A].Proceedings of Workshop on Visual Surveillance at European Conference on Computer Vision[C].Graz,Austria,2006.

共引文献42

同被引文献31

  • 1郑志彬,叶中付.基于相位相关的图像配准算法[J].数据采集与处理,2006,21(4):444-449. 被引量:34
  • 2张志刚,周明全.一种快速自适应的角点检测算法[J].计算机应用与软件,2007,24(7):9-11. 被引量:3
  • 3ZOU Xiaochun, HE Mingyi, ZHAO Xinbo, et al. A robust mo- saic panorama technique for vedio [ C ] //2nd intemation',d Con- ference on Computer engineering and Technology, 2010: 641-644.
  • 4BROWNM, LOWEDG. Automatic panoramic image stitching using invariant features [ J ]. Internation',.d Journal of Computer Vision, 2007,4( 1 ) : 59-73.
  • 5Ke, Y., and Sukthankar, R. 2004. PCA-S1Ft': A More Distinc- tive Representation for Local Image Descriptors. Proc. CVPR2: 506-513.
  • 6Herbert Bay, Andreas Ess, Tinne Tuytelaars. SURF: Speeded up robust features[ J ]. Computer Vision and Image Understanding, 2008, 110 (3) : 346-359.
  • 7C. Harris, M. Stephens. A Combined Corner and Edge Detector [ C]. Proe of 4th Alvey Vision Conference, 1988.
  • 8E. ROSTEN, T. DRUMMOND. Maching learning for high-speed comer detection [ C ]//Lecture Notes in Computer Science, 2006, 3951: 430-443.
  • 9SMITH S M, BRADY M. SUSAN - a new approach to low level image processing[ J]. lnternetional Journal of Computer Vision, 1997,23(1) : 45 - 78.
  • 10Calonder M, et al. Brief: binary robust independent elementary features [ A]. 11th European Conference on Computer Vision [C], Heraklion, Crete, 2010:778-792.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部