期刊文献+

The effects of parametrization of the dark energy equation of state

The effects of parametrization of the dark energy equation of state
下载PDF
导出
摘要 We investigate in detail the influence of parametrizations of the dark energy equation of state on reconstructing dark energy geometrical parameters, such as the deceleration parameter q(z) and Om diagnostic. We use a type Ia supernova sample, baryon acoustic oscillation data, cosmic microwave background information along with twelve observational Hubble data points to constrain cosmological parameters. With the joint analysis of these current datasets, we find that the parametrizations of w(z) have little influence on the reconstruction result of q(z) and Ore. The same is true for the transition (cosmic deceleration to acceleration) redshift zt, for which we find that for different parametrizations of w(z), the best fitted values of zt are very close to each other (about 0.65). All of our results are in good agreement with the ACDM model. Furthermore, using the combination of datasets, we do not find any signal of decreasing cosmic acceleration as suggested in some recent papers. The results suggest that the influence of the prior w(z) is not as severe as one may anticipate, and thus we can, to some extent, safely use a reasonable parametrization of w(z) to reconstruct some other dark energy parameters (e.g. q(z), Ore) with a combination of datasets. We investigate in detail the influence of parametrizations of the dark energy equation of state on reconstructing dark energy geometrical parameters, such as the deceleration parameter q(z) and Om diagnostic. We use a type Ia supernova sample, baryon acoustic oscillation data, cosmic microwave background information along with twelve observational Hubble data points to constrain cosmological parameters. With the joint analysis of these current datasets, we find that the parametrizations of w(z) have little influence on the reconstruction result of q(z) and Ore. The same is true for the transition (cosmic deceleration to acceleration) redshift zt, for which we find that for different parametrizations of w(z), the best fitted values of zt are very close to each other (about 0.65). All of our results are in good agreement with the ACDM model. Furthermore, using the combination of datasets, we do not find any signal of decreasing cosmic acceleration as suggested in some recent papers. The results suggest that the influence of the prior w(z) is not as severe as one may anticipate, and thus we can, to some extent, safely use a reasonable parametrization of w(z) to reconstruct some other dark energy parameters (e.g. q(z), Ore) with a combination of datasets.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第12期1403-1412,共10页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 10625313,10973039 and 11033002) the National Basic Research Program of China (973 program GrantNo. 2009CB824800)
关键词 cosmology: observations -- cosmology: cosmological parameters cosmology: observations -- cosmology: cosmological parameters
  • 相关文献

参考文献33

  • 1Amanullah, R., Lidman, C., Rubin, D., et al. 2010, ApJ, 716, 712.
  • 2Barboza, E. M., & Alcaniz, J. S. 2008, Physics Letters B, 666, 415.
  • 3Bassett, B. A., Corasaniti, P. S., & Kunz, M. 2004, ApJ, 617, L1.
  • 4Bond, J. R., Efstathiou, G., & Tegmark, M. 1997, MNRAS, 291, L33.
  • 5Caldwell, R. R. 2002, Physics Letters B, 545, 23.
  • 6Caldwell, R. R., Dave, R., & Steinhardt, P. J. 1998, Physical Review Letters, 80, 1582.
  • 7Chevallier, M., & Polarski, D. 2001, International Journal of Modern Physics D, 10, 213.
  • 8Copeland, E. J., Sami, M., & Tsujikawa, S. 2006, International Journal of Modem Physics D, 15, 1753.
  • 9Cunha, J. V., & Lima, J. A. S. 2008, MNRAS, 390, 210.
  • 10Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部