摘要
设p是奇素数,n为一正偶数,且满足gcd(n-1,p+1)=1。令d=(pn-1+1)/(p+1),α是有限域Fpn的本原元,研究了周期为pn-1的p元m序列{tr1n(αt)}与其采样序列{tr1n(αdt)}之间的互相关性,确定了相关函数Cd(τ)的所有可能取值,并得到了|Cd(τ)+1|£pn/2+1的概率。当n充分大时,该概率接近1。
Let p be an odd prime and n be even positive integer with gcd(n- 1 ,p+ 1)= 1 .For d=(p^(n-1) + 1)/(p+ 1) ,the crosscorrelation between the p-ary m-sequence {tr 1^n(a^t)} and its decimated sequence {tr 1^n(a^dt)} is investigated,where a is the primitive element of F..The possible values of the crosscorrelation function Cd(r) are determined and the probability of |Ca(r)+1|〈p^n/(2+1) is also determined.Whenn is big enough,this probability approximates to 1.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第35期1-3,10,共4页
Computer Engineering and Applications
基金
国家自然科学基金(No.60904005)
中南民族大学中央高校基本科研业务费专项资金项目(No.CZQ11009)~~
关键词
相关函数
指数和
p元m序列
有限域
cross-correlation function
exponential sum
p -ary m -sequences
finite fields