期刊文献+

三维模型边缘特征与异常检测

Edge features and anomaly detection for 3D models
下载PDF
导出
摘要 针对三维模型识别和检测问题,提出一种新的基于边缘特征的三维模型异常检测方法。将每一个三维模型利用边缘特征表示为一条时间序列,对产生的时间序列集进行Isodata聚类,利用聚类结果经过两次划分实现异常检测。第一次划分过程产生候选异常和候选正常,第二次划分过程在候选异常中进一步选出检测结果。实验结果表明,该算法性能优于传统的基于距离、邻近度以及基于相对密度的异常检测算法,在一定条件下,也优于基于密度的异常检测算法。 Aiming at problems in identification and detection of 3D models,a new method of anomaly detection based on edge features for 3D models is presented.Each throe-dimensional model is expressed as a time series through the edge features.Then the obtained time series dataset are clustered using the isodata algorithm.Anomalies are detected by partitioning the dataset twice using the clustering results.It partitions the dataset into two subsets,the preparatory norm set and the preparatory anomaly set, and then the final anomalies are further filtered from the preparatory anomaly set.Experiment results show better performance of the proposed method compared with anomaly detection methods based on distance, neighbourhood or relative density.Under certain conditions,it is also better than density based anomaly detection.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第35期214-217,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60573076) 福建省新世纪优秀人才支持计划(No.XSJRC2007-11)~~
关键词 三维模型 异常检测 Isodata聚类 接受者操作特性曲线 3D models anomaly detection Isodata clustering Receiver Operationg Characteristic(ROC) curve
  • 相关文献

参考文献10

  • 1Tan P N,Steinbach M,Kumar V.Introduction to data mining[M}. New York:Addison Wesley,2006.
  • 2Knorr E M, Ng R T, Tucakov V.Distance-based outliers: algorithms and applications[J].The International Journal on Very Large Data Bases,2000,8(3/4):237-253.
  • 3Ramaswamy S, Rastogi R, Shim K.Efficient algorithms for mining outliers from large data sets[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000: 427-438.
  • 4Breunig M M,Kriegel H P ,Ng R T ,et al.LOF :identifying densitybased local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference On Management of Data,2000:93-104.
  • 5韦东兴,陈晓云,徐荣聪.基于角点检测的图像形状特征提取方法[J].计算机工程,2010,36(4):220-222. 被引量:15
  • 6Van Erkel A R, Pattynama P M.Receiver operating characteristic (ROC)analysis:basic principles and applications in radiology[J]. European Journal of Radiology,1998,27(2):88-94.
  • 7Shilane P,Min P,Kazhdan M,et al.The princeton shape benehmark[C]//Shape Modeling Intemational,Genova,Italy,June 2004.
  • 8Hawkins D M.Identification of Outliers[M].New York:Chapman and Hail, 1980.
  • 9Jiang Shengyi, Song Xiaoyu, Wang Hui, et al.A custering-based method for unsupervised intrusion detections[J].Pattern Reeognition Letters, 2006,27(7) : 802-810.
  • 10Gonzalez R C, Woods R E.Digital image processing[M].3rd ed. New Jersey:Pearson Prentice Hall,2008.

二级参考文献6

  • 1Zhang Dengsheng, Lu Guojun. Review of Shape Representation and Description Techniques[J]. Pattern Recognition, 2004, 37(1): 1-19.
  • 2Niennattrakul V, Ratanamahatana C A. Clustering Multimedia Data Using Time Series[C]//Proc. of International Conference on Hybrid Information Technology. Island, Korea: [s. n.], 2006.
  • 3Gandhi A. Content-based Image Retrieval: Plant Species Identification[EB/OL]. (2002-09-27). http://web.engr.Oregonstate.edu/ %7Etgd/leaves/dataset.htm.
  • 4Mikolajczyk K, Leibe B, Schiele B. Local Features for Object Class Recognition[C]//Proc. of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE Press, 2005.
  • 5冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2005.
  • 6裘镇宇,危辉.基于Freeman链码的边缘跟踪算法及直线段检测[J].微型电脑应用,2008,24(1):17-20. 被引量:14

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部