摘要
The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes, as recently reported by [Diez-Perez et al. Nature Chem. 1 635 (2009)], are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory. Two kinds of symmetrical anchoring geometries are considered. Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode. For the equilateral triangle configuration, pronounced rectification behaviour comparable to the experimental measurement is revealed, and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage. While for the tetrahedron configuration, both rectification and negative differential conductivity behaviours are observed. The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration.
The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes, as recently reported by [Diez-Perez et al. Nature Chem. 1 635 (2009)], are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory. Two kinds of symmetrical anchoring geometries are considered. Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode. For the equilateral triangle configuration, pronounced rectification behaviour comparable to the experimental measurement is revealed, and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage. While for the tetrahedron configuration, both rectification and negative differential conductivity behaviours are observed. The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration.
基金
supported by the National Natural Science Foundation of China (Grant Nos. 10804064,10904084,and 10974121)
the Middle-Aged and Young Scientists Research Awards Foundation of Shandong Province of China (Grant No. 2009BS01009)
the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AZ002)