摘要
We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
基金
Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50937001)
the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011)
the Construction of Key Laboratories in Universities of Guangxi,China (Grant No. 200912)