期刊文献+

Regional Oceanic Impact on Circulation and Direct Radiative Effect of Aerosol over East Asia 被引量:1

Regional Oceanic Impact on Circulation and Direct Radiative Effect of Aerosol over East Asia
下载PDF
导出
摘要 The Regional Integrated Environmental Model System(RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model(POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect(DRE) of aerosol over East Asia.The aerosols considered in this study include both major anthropogenic aerosols(e.g.,sulfate,black carbon,and organic carbon) and natural aerosols(e.g.,soil dust and sea salt) .The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II,and the simulated period is from 1 January to 31 December 2006.The results show the following:(1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean.(2) In summer,the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward,and the continental low is stronger than without POM in summer.(3) The aerosol optical depth(AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM.(4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore,the authors should take account of the impact of the regional ocean model on studying the direct climate effect of aerosols in long term simulation. The Regional Integrated Environmental Model System (RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model (POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect (DRE) of aerosol over East Asia. The aerosols considered in this study include both major anthropogenic aerosols (e.g., sulfate, black carbon, and organic carbon) and natural aerosols (e.g., soil dust and sea salt). The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II, and the simulated period is from 1 January to 31 December 2006. The results show the following: (1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean. (2) In summer, the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward, and the continental low is stronger than without POM in summer. (3) The aerosol optical depth (AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM. (4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore, the authors should take account of the impact of the regional ocean model on studying the direct climate effect &aerosols in long term simulation.
出处 《Atmospheric and Oceanic Science Letters》 2011年第6期324-329,共6页 大气和海洋科学快报(英文版)
基金 supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03) the National Basic Research Program of China(Grant Nos.2010CB950900 and 2009CB421100) the National Natural Science Foundation of China(Grant No. 91025003) the R&D Special Fund for Public Welfare Industry (Meteorology)(Grant No.GYHY200906020)
关键词 气溶胶光学厚度 海洋模型 辐射效应 东亚地区 流通 区域海洋模式 模型系统 POM aerosols, direct radiative effect, circulation, regional ocean model, the Regional Integrated Environ- mental Model System 2.0
  • 相关文献

参考文献5

二级参考文献33

共引文献150

同被引文献20

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部