期刊文献+

知识型神经网络的射频/微波器件建模方法(英文) 被引量:2

Knowledge-Based Neural Networks for Modeling of Radio-Frequency/Microwave Components
下载PDF
导出
摘要 综述了用神经网络对射频与微波电子器件建模的方法,利用知识型的概念将射频或微波电子的等效电路和经验公式与神经网络有机的结合起来。将相关知识附加到神经网络模型的优势进行了论证.通过与无附加知识的传统多层感知器对比,证明了知识型神经网络的可行性。介绍了几种现有电路模型与神经网络结合的方法,如差分法、先于知识输入法及空间映射神经网络法。举例介绍了微波传输线和高电子迁移率晶体管的建模方法及过程,证明了基于知识的神经网络是各种微波器件建模的一种有效方法。 An overview of advanced neural network methods for modeling radio-frequency (RF) and microwave electronic devices is presented. Knowledge-based engineering concept is utilized where the knowledge of RF/microwave electronics in the form of equivalent circuits and empirical formulas is combined with neural networks. Advantages of adding knowledge on the performance of the neural models in terms of generalization ability versus different sizes of training data through a knowledge based neural network (KBNN) technique are demonstrated and examples of comparisons with conventional MLP (without any knowledge-base) are given. Several methods of combining existing circuit models with neural networks, including the source difference method, the prior knowledge input method, and the space-mapped neural models, are also introduced. Application examples on modeling microwave transmission line and high electron mobility transistor (HEMT) device demonstrate that KBNN is an efficient approach for modeling various types of microwave devices.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第6期815-824,共10页 Journal of University of Electronic Science and Technology of China
基金 Supported by the Tianjin Science and Technology Commission(10ZCKFGX01500)~~
关键词 知识型 建模 神经网络 射频/微波电子器件 knowledge-based engineering modeling neural networks radio-frequency/microwave electronic devices
  • 相关文献

参考文献29

  • 1ZHANG Q J, GUPTA K C, DEVABHAKTUNI V K. Artificial neural networks for RF and microwave design-fi'om theory to practice[J]. IEEE Trans, Microwave Theory Tech, 2003, 51: 1339-1350.
  • 2RAYAS-SANCHEZ J E. EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art[J]. IEEE Trans, Microwave Theory Tech, 2004, 52: 420-435.
  • 3KABIR H, ZHANG L, YU M, et al. Neural networks for microwave modeling and design[J]. IEEE Microwave Magazine, 2010, 11(3): 105-118.
  • 4ZHANG Q J, GUPTA K C. Neural networks for RF and microwave design[M]. Boston: Artech House, 2000.
  • 5BURRASCANO P, F1ORI S, MONGIARDO M. A review of artificial neural networks applications in microwave computer-aided design[J]. Int J RF Microwave CAE, 1999, 9" 158-174.
  • 6WANG F, ZHANG Q J. Knowledge based neural models for microwave design[J]. IEEE Trans Microwave Theory Tech, 1997, 45: 2333-2343.
  • 7Department of Electronics, Carleton University. NeuroADS[CP/CD]. Ottawa, Canada: K1S 5B6.
  • 8Agilent Technologies. Advanced design system ADS [CP/CD]. Santa Rosa, CA: 95403.
  • 9WATSON P M, GUPTA K C. EM-ANN models for microstrip vias and interconnects in multilayer circuits[J]. IEEE Trans Microwave Theory Teeh, 1996, 44: 2495-2503.
  • 10WATSON P M, GUPTA K C, MAHAJAN R L. Development of knowledge based artificial neural network models for microwave components[C]//IEEE lnt Microwave Symp Digest. Baltimore, MD: [s.n.], 1998: 9-12.

同被引文献17

  • 1ZHANG Q J, GUPTA K C. Neural networks for RF and microwave design [ M]. Boston: Artech House, 2000:3 -4.
  • 2KABIR H, ZHANG L, YU M, et al. Smart modeling of microwave devices [J]. IEEE Microwave Magazine, 2010, 11(3) : 105 - 118.
  • 3KABIR H, WANG Y, YU M, et al. Neural network inverse model- ing and applications to microwave filter design [ J]. IEEE Transac- tions on Microwave Theory and Techniques, 2008, 56(4): 867 - 879.
  • 4GARCIA J P, PEREIRA 17 Q, REBENAQUE D C, et al. A neural- network method for the analysis of multilayered shielded microwave circuits [ J]. IEEE Transactions on Microwave Theory and Tech- niques, 2006, 54(1): 309-320.
  • 5O' BRIEN B, DOOLEY J, BRAZIL T J. RF power amplifier behav- ioral modeling using a globally recurrent neural network[ C]//Pro- ceedings of the 2006 IEEE Microwave Symposium Digest. Piscat- away: IEEE, 2006: 1089-1092.
  • 6张川.递归神经网络对功率放大器的行为级建模[D].天津:天津大学,2014.
  • 7ZHANG L, XU J, YAGOUB M, et al. Efficient analytical formula- tion and sensitivity analysis of neuro-space mapping for nonlinear mi- crowave device modeling[ J]. IEEE Transactions on Microwave The- ory and Techniques, 2005, 53(9) : 2752 -2767.
  • 8GORISSEN D, ZHANG L, ZHANG Q, et al. Evolutionary neuro- space mapping technique for modeling of nonlinear microwave de- vices[ J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(2): 213-229.
  • 9ZHANG L, ZHANG Q, WOOD J. Statistical neuro-space mapping technique for large-signal modeling of nonlinear device[ J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 54 (11): 2453-2467.
  • 10ZHANG L, XU J, YAGOUB M, et al. Neuro-space mapping tech- nique for nonlinear device modeling and large-signal simulation [ C]// Proceedings of the 2003 IEEE Microwave Symposium Di- gest. Piscataway: IEEE, 2003:173-176.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部