期刊文献+

基于尖点突变模型的IP网络异常行为检测方法 被引量:2

IP Network Anomalous Behaviors Detection Mechanism Based on Cusp-Catastrophe Model
下载PDF
导出
摘要 由于数据挖掘、贝叶斯等传统异常检测方法仅依据网络正常行为特征而没考虑异常行为特征,致使其异常检测率偏低和误报率偏高,该文基于尖点突变模型而针对性地提出了一种新的IP网络异常行为描述模型及其检测机制。它们充分利用了尖点突变模型的多稳态性和突变性,准确地描述了网络正常行为特征和异常行为特征。最后以Kdd-Cup 99数据集为例,对比了不同机制的异常检测性能,结果显示,与贝叶斯BN和决策树C4.5等机制相比,所提出的检测机制在检测率和误报率方面都有所优势。 Some traditional anomaly detection mechanisms (such as data mining and Bayes methods) have much poorer performance in terms of detection rate and false alarm rate because they consider only the normal behavior feature of IP networks, and neglect that of the abnormal behaviors. Motivate by the situations, this paper proposed a new characterization model of abnormal behaviors, and also developed an anomaly detection mechanism based on cusp-catastrophe for IP networks. They not only make the best of the prominent features of cusp-catastrophe in terms of multiple steady states and discontinuous catastrophe, and also can describe the normal behavior features and abnormal ones. Finally under Kdd-Cup 99 datasets, the proposed mechanism is evaluated, and the evaluation result shows that its detection rate and the false detection have greatly been improved compared with BN and C4.5.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第6期892-897,共6页 Journal of University of Electronic Science and Technology of China
基金 国家973计划(2007CB310706 2012CB315905) 国家自然科学基金(60725104 60873263 60932005 61172048 61100184) 教育部新世纪优秀人才支持计划(NCET-09-0268) 四川省青年基金(09ZQ026-032) 广东省产学研项目(2010A090200053)
关键词 异常检测 尖点突变 IP网络 Kdd-Cup99数据集 anomaly detection cusp-catastrophe IP networks KDD-cup 99 dataset
  • 相关文献

参考文献17

  • 1DESHPANDE S, THOTTAN M, HOT K, et al. A statistical approach to anomaly detection in interdomain routing[C]// Proe of BROADNETS 2006. San Jose, CA: [s.n.], 2006: 1-10.
  • 2SRINIVASAN N, VAIDEHI V. Reduction of false alarm rate in detection network anomaly using mahalanobis distance and similarity measure[C]//Proc of ICSCN'07. Chennai, India: [s.n.], 2007: 366-371.
  • 3FROBES G J, HALL F L. The applicability of catastrophe theory in modeling breeway traffic operators[J]. Transportation Research, 1990, 24A(5): 335-344.
  • 4CHAD J A, HALL F L. Application of catastrophe theory to traffic flow variables[J].Transportation Research Part B: Methodological, 1994, 28(3): 235-250.
  • 5黄光球,胡晓婷,刘通.基于突变理论的网络异常行为分析方法[J].微电子学与计算机,2006,23(7):24-27. 被引量:3
  • 6WENKE L, STOLFO M S J. A data mining framework for building intrusion detection models[C]//Proc of 1999 IEEE Symposium on Security and Privacy. Oakland, CA, USA: [s.n.], 1999: 120-132.
  • 7ZHONG Shi, KHOSHGOFTAAR T, NAEEM S. Clustering-based network intrusion detection[J]. International Journal of Reliability, Quality and Safety Engineering, 2007, 14(2): 169-187.
  • 8GU Guo-fei, CARDENAS A, WENKE L. Principled reasoning and practical applications of alert fusion in intrusion detection systems[C]//Proc of ASIACCS'08. Tokyo, Japan: [s.n.], 2008: 136-147.
  • 9ALARCON A V, BARRIIA J A. Anomaly detection in communication networks using wavelets[J]. IEEE Communications Proceedings, 2001, 148(6): 355-362.
  • 10FRANKLIN N R, CARVER D, HUTCHINGS B L, Assisting network intrusion detection with reconfigurable hardware[C]//Proe of IEEE FCCM'02. Napa, California, USA: [s.n.], 2002: 111-120.

二级参考文献14

  • 1黄光球,彭绪友,靳峰.基于密度的异常挖掘方法研究与应用[J].微电子学与计算机,2005,22(3):262-265. 被引量:8
  • 2[1]Lee W,Stolfo S J.Data mining framework for building intrusion detection models[C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy.Oakland:IEEE,1999:120-132.
  • 3[2]Lazarevic A,Ertoz L,Kumar V,et al.A comparative study of anomaly detection schemes in network intrusion detection[C]//Proceedings of the 3nd SIAM International Conference on Data Mining.San Francisco,CA:SIAM,2003:1-12.
  • 4[3]Portnoy L,Eskin E,Stolfo S J.Intrusion detection with unlabeled data using clustering[C]//Proceedings of the ACM CSS Workshop on Data Mining Applied to Security.Philadelphia,PA:ACM,2001:5-8.
  • 5[4]The third international knowledge discovery and data mining tools competition dataset KDDCup-99[DB/OL].[1999-10-28].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,1999.
  • 6[5]Jiawei H,Kamber M.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann,2000:232-233.
  • 7[6]Eskin E,Arnold A,Prerau M,et al.A geometric framework for unsupervised anomaly detection:Detecting intrusions in unlabeled data[C]//Proceedings of the Data Mining for Security Applications.Boston:Kluwer Academic Press,2002:381-390.
  • 8[7]Modha D S,Spangler W S.Feature weighting in k-means clustering[J].Machine Learning,2003,52(3):217-237.
  • 9[8]Wilson D R,Martinzez T R.Improved heterogeneous distance functions[J].Journal of Artificied Intelligence Research,1997,6(1):1-34.
  • 10[9]Zhou Z H,Yu Y.Ensembling local learners through multimodal perturbation[J].IEEE Trans Systems,Man and Cybernetics-B,2005,35(4):725-735.

共引文献4

同被引文献25

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部