期刊文献+

3kHz微型驻波热声发动机的实验研究 被引量:1

Experimental study of a 3 kHz miniature standing wave thermoacoustic engine
原文传递
导出
摘要 以芯片冷却为应用背景,在线性热声学理论的指导下,以降低起振温度、获得较高的热声转换效率为目标,进行了机型的选择和热声热机核心段的设计.研制了一台3.3kHz微型驻波热声发动机,长度为55mm,由加热器、回热器、冷却器及谐振管4部分组成.在9W的加热量下,热端温度78℃时该发动机产生自激振荡,起振温差为26℃.稳定运行后发动机声压振幅达到172.5dB,最高估算热声转换效率为8%. A 3.3 kHz miniature standing wave thermoacoustic engine with length of 55 mm was designed for the application of the chip cooling.It consists of the heater,regenerator,cooler and resonance tubes.Development of the prototype was mainly based on the linear thermoacoustic theory and the design of the parts of the prime mover was performed to achieve low onset temperature and high heat to acoustic power efficiency.The miniature prime mover was designed to self oscillate at the onset temperature of 78 ℃ and with a temperature difference 26 ℃ and the heating power of 9 W.The hightest SPL achieved 172.5 dB after stable operation and the hightest estimated efficiency of heat to sound was 8%.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期125-128,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重大资助项目(50890181)
关键词 芯片冷却 热声学 驻波 发动机 实验 转换效率 chip cooling thermoacoustic standing wave engine experiment conversion efficiency
  • 相关文献

参考文献10

  • 1Chen R L, Chen Y C, Chen C L, et al. Development of miniature thermoacoustic refrigerator [C] // The 40th AIAA Aerospace Science Meeting and Exhibit American Institute of Aeronautics and Astronautics, 2002: 14-17.
  • 2Direk S. Design of a mini thermo-acoustic refrigerator [D]. Monterey: College of Power Engineering, Na- val Postgraduate School, 2001.
  • 3Petrina D. Performance measurement of a mini ther moacoustic refrigerator and associated drivers [D]. Monterey~ College of Power Engineering, Naval Postgraduate School, 2002.
  • 4张晓青,陈宇,董凯军,蒋华,柳玉林,陈谦.高频微型热声制冷机的样机设计与性能预测[J].低温工程,2005(2):45-50. 被引量:5
  • 5Swift G W, Backhaus S. Thermoacoustie-stirling heat engine: detailed study[J]. J Acoust Soc Am, 2000, 107(6) : 3148-3166.
  • 6Najmeddin S T. Development of small-scale ther- moaeoustic engine and thermoacosutic cooling demon strator[D]. Washington: School of Mechanical and Material Engineering, Washington State University, 2006.
  • 7McLaughlin B J. Study and development of high fre- quency thermoacosutic movers with piezoelectric transducers [D]. Salt Lake City: Department of Physics, The University of Utah,2003.
  • 8Webb N D. Pressurized high frequency thermoacous- tic engines[D]. Salt Lake City: Department of Phys- ics, The University of Utah, 2005.
  • 9Rodriguez I A. Performance of annular high fre- quency themoacoustic engines[D]. Salt Lake City: Department of Physics, The University of Utah, 2007.
  • 10Swift G W. Thermoacoustics: a unifying perspective for some engines and refrigerators, fifth draft: 2001 [EB/OL]. [2000-11-09]. http: //www. lanl. go/ thermoacoustics/Bool/.

二级参考文献4

  • 1Symko 0 G, Abdel-Rahman E, Kwon Y S, et al. Design and development of high frequency thermoacoustic engines for thermal management,in microelectronics. Microelectronics,2004,35 ( 1 ): 185 ~ 191.
  • 2Orest G Symko, et al. High frequency thermoacoustic refrigerator, US.Patent 0000150 A1,2004.
  • 3Ward W C, Swift G W. Design environment for low amplitude thermoacoustic engines (DeltaE) ,J. Acoust. Soc. Am. , 1994,95:3671 ~3672.
  • 4Swift G W. Thermoacoustic engines, J. Acoust. Soc. Am. , 1988,84:1145 ~ 1180.

共引文献4

同被引文献12

  • 1Swift G W. Thermoacoustic engines [J]. Journal ofthe Acoustical Society of America, 1988? 84(4):1145-1180.
  • 2Arnott W P,Bass H E,Raspet R,General formula-tion of thermoacoustics for stacks having arbitrarilyshaped pore cross section[J]. Journal of the Acous-tical Society of America, 1991,90(6) ? 3228-3237.
  • 3Bosel J,Trepp C,Fourie J G. An alternative stackarrangement for thermoacoustic heat pumps and re-frigerators[J]. Journal of the Acoustical Society ofAmerica, 1999, 106(2) : 707-715.
  • 4Backhous S,Swift G W. A thermoacoustic-stirlingheat engine: detail study[J]. Journal of the Acous-tical Society of America,2000,107(6) : 3148-3166.
  • 5Adeff J A,HoflerT J,Atchley A A, et al. Measure-ments with reticulated vitreous carbon stacks in ther-moacoustic prime movers and refrigerators[J]. Jour-nal of the Acoustical Society of America, 1998, 104(1): 32-38.
  • 6Swift G W. Thermoacoustics : a unifying perspectivefor some engines and refrigerators[M]. New York:Acoustical Society of America? 2001.
  • 7Ward B,Clark J,Swift G W. Design environment forlow-amplitude thermoacoustic energy conversion 6.2b3 veision[EB/OL]. [2013-01-20]. http: // www.lanl. gov/thermoacoustics/DeltaEC. html.
  • 8Roh H? Raspet R,Bass H. Parallel capillary-tube-based extension of thermoacoustic theory for randomporous media[J]. Journal of the Acoustical Societyof America, 2007,121(3): 1413-1422.
  • 9Tasnim S H,Mahmud S,Fraser R A,et al. Brink-man-Forchheimer modeling for porous media ther-moacoustic system[J], International Journal of Heatand Mass Transfer, 2011, 54: 3811-3821.
  • 10Nield D A, Bejan A. Convection in porous media[M]. 3rd Edition. Berlin: Springer Verlag,2006.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部