期刊文献+

合成孔径雷达压缩感知成像方法 被引量:2

On compressive sensing applied to SAR imaging
下载PDF
导出
摘要 为解决大带宽、多通道空间雷达系统的数据量大导致数据无法存储和传输的问题,介绍了一种基于压缩感知理论(CS,Compressive Sensing)的、全新的合成孔径雷达数据获取体制和脉冲压缩方法.在观测场景满足一定稀疏特性的前提条件下,使用该方法取代传统的匹配滤波方法进行脉冲压缩处理,可以从远远低于常规雷达所获取的数据量中恢复出原始场景.压缩感知脉冲压缩是通过使用一种贪婪追踪算法解一个逆问题来重建脉冲压缩后的信号.给出了该方法的原理和过程,并通过计算机仿真验证了该方法的有效性.这种新方法可以简化雷达系统,有效降低存储和传输的数据量,将设计重点从昂贵的接收机硬件上转移到智能信号重建算法上去. State of the art radar systems apply a large bandwidth and an increasing number of channels produce huge amount of data.The data easily exceeds that be stacked in the sensor or downlinked to the ground station.In order to solve this trouble,a novel synthetic aperture radar(SAR) raw data retrieval and a corresponding pulse compression method based on compressive sensing(CS) theory were presented.Under the assumption that the observed scene shows characteristic of a sparse reflectivity distribution,traditional matched filter can be replaced by CS for pulse compression.Benefits from this substitution include much lower data amount for scenario reconstruction than traditional SAR.In this method,the pulse compressed signal was reconstructed by solving an inverse problem through a greedy pursuit.The principle and process of the algorithm were given,and the effectiveness was validated by computer simulation.The new approach greatly simplifies the radar system,effectively reduces the huge amount of data,thus shifting emphasis from expensive receiver design to smart signal recovery algorithms.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第11期1333-1337,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家973计划资助项目(2010CB731902)
关键词 压缩感知 脉冲压缩 合成孔径雷达 compressive sensing pulse compression synthetic aperture radar
  • 相关文献

参考文献7

  • 1Stuart G W. Environm Sci Tech[J],1977,11(3):272
  • 2Hegazi E,Hamdan A,Mastromarino J. Appl Spectros[J],2001,55(2):202
  • 3Digambara P,Mishra A K. Appl Spectroscopy[J],2001,55(2):338
  • 4SONGJi-Mei(宋继梅) TANGBi-Lian(唐碧莲).Spectros Spect Anal(光谱学与光谱分析),2000,20(1):115-115.
  • 5Inman E L,Winefordner J D. Anal Chim Acta[J],1982,138:245
  • 6CHENGuo-Zhen(陈国珍) HUANGXian-Zhi(黄贤智) XUJin-Gou(许金钩) etal.Fluorescence Spectroscopy Analysis(荧光分析法) 2nd Edn(第2版) [M].Beijing(北京):Science Press(科学出版社),1990:10..
  • 7LIYao-Qun(李耀群) HUANGXian-Zhi(黄贤智).Chin J Anal Chem(分析化学),1989,17(12):1154-1154.

共引文献1

同被引文献39

  • 1Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine,2007: 118-124.
  • 2Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly income-plete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 4Donoho D L, Elad M, Temlyakov V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 5Baraniuk R Steeghs P. Compressive radar imaging[C]//IEEE Radar Conference. Boston, MA, USA: IEEE, 2007:128-133.
  • 6Tello M, Lopez-Dekker P, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J].IEEE Transaetions on Geoscience and Remote Sensing, 2010,48(12):4285-4295.
  • 7Shi G M, Lin J, Chen X Y, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 2008, 55(4): 379-383.
  • 8Jouny I. Compressed sensing for UWB radar target signature reconstruction[C]//Proceedings of Digital Signal Processing Workshop and the 5th IEEE Signal Processing Education Workshop. Marco Island, FL, USA: IEEE, 2009: 714-719.
  • 9Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging[J].Proceedings of the IEEE, 2010,98(6): 1006-1020.
  • 10Alonso M T, Lopez-Dekker P, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(12): 4285-4295.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部