期刊文献+

Analytical potential energy function and spectroscopy parameters for B^1Π state of KH

Analytical potential energy function and spectroscopy parameters for B^1Π state of KH
原文传递
导出
摘要 Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals. Multi-reference configuration interaction is used to produce potential energy curves (PECs) for the excited B1FI state of KH molecule. To investigate the correlation effect of core-valence electrons, five schemes are employed which include the different correlated electrons and different active spaces. The PECs are fitted into analytical potential energy functions (APEFs). The spectroscopic parameters, ro-vibrational levels, and transition frequencies are determined based on the APEFs and compared with available experimental and theoretical data. The molecular properties for B1II obtained in this letter, which are better than those available in literature, can be reproduced with calculations using the suitable correlated electrons and active space of orbitals.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第12期39-42,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 10974078,10674114,and 10874104) the Research Fund for the Doctoral Program of Higher Education of China (No.20093704110001)
  • 相关文献

参考文献28

  • 1S. Yang, Y. K. Hsieh, K. K. Verma, and W. C. Stwalley, J. Mol. Spectrosc. 83, 304 (1980).
  • 2M. Giroud and O. Nedelec, J. Chem. Phys. 73, 4151 (1980).
  • 3K. Hussein, C. Effantin, J. d'Incan, J. Verges, and R. F. Barrow, Chem. Phys. Lett. 124, 105 (1986).
  • 4W. T. Zemke and W. C. Stwalley, Chem. Phys. Lett. 143, 84 (1988).
  • 5G. H. Jeung, J. P. Daudey, and J. P. Malrieu, J. Phys. B: At. Mol. Phys. 16, 699 (1983).
  • 6V. M. Garc?3a, R. Caballol, and J. P. Malrieu, J. Chem. Phys. 109, 504 (1998).
  • 7H. S. Lee, Y. S. Lee, and G.-H. Jeung, Chem. Phys. Lett. 325, 46 (2000).
  • 8N. Khelifi, B. Oujia, and F. X. Gadea, J. Chem. Phys. 116, 2879 (2002).
  • 9A. Y. Lee and W. T. Luh, J. Chem. Phys. 131, 164304 (2009).
  • 10H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部