期刊文献+

比例因子自调整模糊神经网络SRM控制研究 被引量:1

Research on SRM Control by Self-adjusting Proportion Factor Fuzzy Neural Network
下载PDF
导出
摘要 基于开关磁阻电机原理,对智能控制算法在开关磁阻电机中的应用进行研究,将模糊逻辑和神经网络控制相结合,对量化因子、比例因子在线调整以提高系统性能。对改进算法控制效果进行仿真,与常规算法进行仿真比较分析;最后以TMS320LF2407DSP为核心控制芯片、三相不对称半桥电路为SR电机功率变换器主电路控制SR电机,给出实际运行转速波形,并对实验进行了分析。 Based on the principle of switched reluctance motor,a intelligence control algorithm in the appli- cation of SRD combined with fuzzy logic and neural network was studied. The controller adjusted the quantifi- cation factor and proportion factor automatically to improve the system's performance, control effect was ana- lyzed and compared by the simulation of improved and unimproved algorithm. The SRM controlled by using TMS320LF2407 as micro control unit and three-phase asymmetric half bridge circuit as power inverter main circuit. The actually rotate speed waves and result analysis were given.
出处 《电气传动》 北大核心 2011年第12期54-60,共7页 Electric Drive
基金 江苏省自然科学基金项目(BK2009350) 南京工程学院校基金项目(KXJ08110) 江苏省高校自然科学基金项目(09KJB460005)
关键词 开关磁阻电机 模糊控制 神经网络 比例因子 switched reluctance motor fuzzy controls neural network proportion factor
  • 相关文献

参考文献8

二级参考文献35

  • 1夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报,2005,25(15):161-165. 被引量:52
  • 2郭伟,赵争鸣,詹琼华.磁网络模型在两相激磁开关磁阻电机中的应用[J].电机与控制学报,2006,10(2):154-159. 被引量:5
  • 3窦振中.模糊逻辑控制技术及其应用[M].北京航空航天大学出版社,1994..
  • 4葛宝明.交流传动系统的新型控制策略:博士学位论文[M].杭州:浙江大学,2000..
  • 5Zhengyu Lin, Donald S Reay, Barry W Williams,et al. Torque Ripple Reduction in Switched Reluctance Motor Drives Using B -spline Neural Networks[J]. IEEE Trans. Ind. Appl. , 2006, 42(6) : 1445-1453.
  • 6Sahoo N C,Xu J X,Panda S K. Low Torque Ripple Control of Switched Reluctance Motors Using herative Learning [J]. IEEE Transactions on Energy Conversion, 2001, 16 (4) :318-326.
  • 7Amit Kumar Jain, Ned Mohan. Dynamic Modeling, Experimental Characterization, and Verification for SRM Operation with Simultaneous Two-phase Excitation[J]. IEEE Transactions on Industrial Electronics, 2006,53(4) : 1238-1249.
  • 8ZHENG Yi, SUN He-xu, DONG Yan,et al. Torque Ripple Minimization with Current Oriented Method for Switched Reluctance Motor[C]//ICEMS2007.
  • 9O'Donovan J G, Roche P J, Kavanagh R C,et al. Neural Network Based Torque Ripple Minimization in a Switched Reluctance Motor[C]//in Proc. IECON, 1994 : 1226-1231.
  • 10Husain I, Ehsani M . Torque Ripple Minimization in Switched Reluctance Motor Drives by PWM Current Control[J]. IEEE Trans. Power Electron, 1996,11(1) :83-88.

共引文献60

同被引文献6

  • 1Holtz J. Sensorless Control of Induction Machines- with orWithout Signal Injection[J].IEEE Transactions on IndustrialElectronics,2006,53(1):7-30.
  • 2Orlowska.Kowalska T. Stator.current.based MRAS Estimatorfor a Wide Range Speed . sensorless Induction Motor Drive[J]. IEEE Transactions on Industrial Electronics,2010,57(4):1296-1308.
  • 3Dybkowski M,Orlowska . Kowalska T. Low . speed Perfor.mance of the Stator Current Based MRAS Estimator with FLController in the Sensorless Induction Motor Drive [C]/Proc of OPTIM 2008,Brasov,Romania. USA:IEEE,2008:75-80.
  • 4Beno.t R,Bruno F,Philippe D,et al. Vector Control of In.duction Machines:Desensitisation and Optimisation ThroughFuzzy Logic[M]. New York :Springer,2012.
  • 5马小亮.怎样才能扩展IM无转速传感器VC系统的调速范围[J].电气传动,2011,41(1):3-8. 被引量:7
  • 6王焕钢,徐文立,杨耕.感应电机无速度传感器控制的自适应转速估计[J].电气传动,2002,32(1):6-9. 被引量:14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部