期刊文献+

冻结与非冻结环境对液-液雾化影响的实验研究 被引量:1

Experimental Study on Freezing or Non-Freezing Fluid Environmental Effect on Liquid-Liquid Atomization
下载PDF
导出
摘要 水在低温冻结环境液体中雾化是液-液循环流化床制取流体冰技术的关键环节。今对常温非冻结环境或低温冻结环境中液-液雾化过程的射流与液滴形成特性进行了实验研究,提出了形成液滴的四种射流破碎方式,考察了冻结与非冻结环境中,滴流雾化向射流雾化转变的射流雷诺数,获得了射流雾化发生时随射流雷诺数的变化,射流破碎方式的转变规律、射流长度及其波动幅度与液滴平均粒径的变化规律。结果表明,射流液体在冻结或非冻结环境下雾化形成液滴的区域特性不一致,尤其是滴流雾化向射流雾化转变之后;射流液体在冻结环境中雾化只能形成单个液滴,其最小粒径的液滴形成在滴流向射流转变过程中,但是射流液体在非冻结环境下雾化可同时形成多个液滴,且形成液滴的粒径随射流雷诺数的增大而减小。 Water atomization in the freezing liquid environment is the key technique for fluid ice production by liquid-liquid circulating fluidized bed(LLCFB).The characteristics of jet and drop formations of liquid-liquid atomization in freezing or non-freezing fluid environment were studied in a LLCFB.In the study,four typical jet breakup shapes relating to the drop formation were defined.The jet flow Reynolds number at which the mode of drop formation transits from dipping to jetting was investigated;and the rules of the changes of the jet breakup shapes,the jet length,its fluctuation extent and the average drop sizes of liquid-liquid jet atomization accompanying with the change of jet flow Reynolds number were obtained.The results show that,in the Rp/R-Reynolds graph,the region characteristics of droplets can be found;and under two different conditions of freezing and non-freezing fluid environments,the characteristics of drop formation in the same Reynolds number regions are unconformity,especially after the region of dripping switching to jetting.Single droplet is formed with all Reynolds numbers under freezing condition,and the minimum size of droplets appears during occurring dripping switching to jetting;whereas,multi-drops can be formed simultaneously under the non-freezing condition,and the drop sizes decrease generally with the increase of jet flow Reynolds number.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2011年第6期923-928,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(50906021) 河南省科技攻关项目(102102210162) 河南省自然科学研究计划项目(2009A470002)
关键词 液-液循环流化床 冻结 液-液雾化 射流破碎 液滴形成 liquid-liquid circulating fluidized bed freezing liquid-liquid atomization jet breakup drop formation
  • 相关文献

参考文献11

  • 1LIANGKun-feng(梁坤峰).Study on the Key Problems of Fluid Ice Production in Liquid-Liquid Circulating Fluidized Bed(液-液循环流化床制取流体冰关键问题研究)[D].Nanjing(南京):School of Energy and Environment,Southeast University(东南大学),2007.
  • 2Barhate R S, Ganapathi Patil, Srinivas N D, et al. Drop formation in aqueous two-phase systems [J]. Journal of Chromatography A, 2004, 1023(2): 197-206.
  • 3于水波,赵宗昌,尹曹勇.湍流分散系统中液滴尺寸的模拟与研究[J].高校化学工程学报,2008,22(4):574-579. 被引量:5
  • 4Rama Rao N V, Baird M H I, Hrymak A N, et al. Dispersion of high-viscosity liquid-liquid systems by flow through SMX static mixer elements [J]. Chem Eng Sci, 2007, 62(23): 6885-6896.
  • 5Doshi E Deformation and Breakup of Liquid-Liquid Threads, Jets, and Drops [D]. USA:Purdue University, 2003.
  • 6Cramer C, Fischer P, Windhab J E. Drop formation in a co-flowing ambient fluid [J]. Chem Eng Sci, 2004, 59(15): 3045-3058.
  • 7梁坤峰,彭正标,袁竹林,凡凤仙.液液雾化特性与粒径分布规律[J].化工学报,2007,58(8):1935-1942. 被引量:13
  • 8Milosevic I N, Longmire E K. Pinch-off modes and satellite formation in liquid-liquid jet systems [J]. International Journal of Multiphase Flow, 2002, 28(11): 1853-1869.
  • 9Peng Z B, Yuan Z L, Wu X, et al. Experimental study on drop formation in liquid-liquid fluidized bed [J]. Chem Eng Sei, 2009, 64(6): 1249-1259.
  • 10Yildirm O E, Basaran O A. Dynamics of formation and dripping of drops of deformation-rate-thining and thickening liquids from capillary tubes [J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 136(1): 17-37.

二级参考文献30

  • 1袁竹林.制取流体冰新方法及高效冰蓄冷研究[J].能源研究与利用,2004(4):36-40. 被引量:12
  • 2徐国华,陈维.高强电场中液滴的破碎[J].高校化学工程学报,1994,8(3):221-229. 被引量:11
  • 3梁坤峰,彭正标,袁竹林.液-液循环流化床制冰过程的火用分析[J].东南大学学报(自然科学版),2006,36(5):774-779. 被引量:4
  • 4赵宗昌,尹曹勇.湍流分散体系中液滴破碎频率模型的黏性修正[J].化工学报,2006,57(12):2834-2839. 被引量:1
  • 5Akio Saito.Recent advances in research on cold thermal energy storage.International Journal of Refrigeration,2002,25(2):177-189
  • 6Wijeysunder N E,Hawlader M N A,Chan Wee Boon Andy,et al.Ice-slurry production using direct contact heat transfer.International Journal of Refrigeration,2004,27(5):511-519
  • 7Shina H T,Lee Y P,Jurng J.Spherical-shaped ice particle production by spraying water in a vacuum chamber.Applied Thermal Engineering,2000,20(5):439-454
  • 8Meewisse J W,Infante Ferreira C A.Validation of the use of heat transfer models in liquid solid fluidized beds for ice slurry generation.International Journal of Heat and Mass Transfer,2003,46(19):3683-3695
  • 9Gregor P Henze,Moncef Krarti,Michael J B.Guidelines for improved performance of ice storage systems.Energy and Buildings,2003,35(2):111-127.
  • 10Scheele G F,Meister B J.Drop formation at low velocities in liquid-liquid systems.AIChE J.,1969,15(7):700-712

共引文献16

同被引文献14

  • 1Ingrosso C, Kim J Y, Binetti E, et al. Drop-on-demand inkier printing of highly luminescent CdS and CdSe@ ZnS nanocrystal based nanocomposites [J]. Mieroeleetronie Engineering, 2009, 86( 4/5/6) : 1124-1126.
  • 2Henderson D M, Pritchard W G, Smolka L B. On the pinch-off of a pendant drop of viscous fluid [J]. Physies of Fluids, 1997, 9(11): 3188-3200.
  • 3Kowalewski T A. On the separation of droplets from a liquid jet [J]. Fluid Dynamics Research, 1996, 17(3): 121-125.
  • 4Brenner M P, Eggers J, Joseph K, et al. Breakdown of scaling in droplet fission at high Reynolds numbers [J]. Physics of Fluids, 1997, 9(6): 1553-1590.
  • 5Furbank R J, Morrisa J F. An experimental study of particle effects on drop formation [J]. Physics of Fluids, 2004, 16(5): 1777-1790.
  • 6Ambravaneswaran B, Wilkes E D, Basaran O A. Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops [J]. Physies of Fluids, 2002, 14(8): 2606-2621.
  • 7Sehulkes R M S M. The evolution and bifurcation of a pendant drop [J]. Journal of Fluid Mechanics, 1996, 309: 227-235.
  • 8Chan K Y, Kwong C K, Tsim Y C. Modelling and optimization of fluid dispensing for electronic packaging using neural fuzzy networks and genetic algorithms [J]. Engineering Applications of Artificial Intelligence, 2010, 23(1): 18-26.
  • 9Sirotkin F V. Yoh J J. A new particle method for simulating breakup of liquid jets [J]. Journal of Computational Physics, 2012, 231(4): 1650-1674.
  • 10Patankar S V. Numerical Heat Transfer and Fluid Flow.[M] Washington, DC: Hemisphere, 1980.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部