期刊文献+

基于图像几何形状特征的CBIR算法 被引量:1

CONTENT-BASED IMAGE RETRIEVAL BASED ON IMAGE GEOMETRIC SHAPE FEATURES
下载PDF
导出
摘要 张量尺度是一种基于图像几何形状的特征描述子,由于其特征提取过程计算复杂度较高,不适合于快速的基于内容的图像检索。提出一种基于图像森林变换的张量尺度特征提取快速算法,并采用归一化的张量尺度方向直方图作为图像几何形状的特征描述子,与相似性度量标准结合,实现了一种具有图像平移、旋转、尺度变换不变特性的基于内容的图像检索算法。与现有的张量尺度计算方法相比,该算法具有较低的计算复杂度,仿真实验结果证明算法的有效性。 Tensor scale is a feature descriptor based on image geometrical shape,it has a high computational cost in its feature extraction process and is not suitable for content-based fast image retrieval.In this paper,a new fast extraction algorithm of tensor scale descriptor based on image foresting transform is proposed,in it the normalised histogram of tensor scale direction is taken as the feature descriptor of image geometric shape,and by combining the similarity metrics standard,a content-based image retrieval method with invariant properties of image translation,rotation and scaling transforms is implemented.Compared with current methods of tensor scale calculation,the proposed approach has lower computational cost.Simulation experimental results demonstrate the validity of the proposed algorithm.
作者 王晅 屈明涛
出处 《计算机应用与软件》 CSCD 2011年第12期122-125,共4页 Computer Applications and Software
基金 陕西省自然科学基础研究计划(2009JM8003)
关键词 张量尺度描述子 基于内容的图像检索 形状描述子 图像森林变换 Tensor scale descriptor Content-based image retrieval Shape descriptor Image foresting transform
  • 相关文献

参考文献7

  • 1Smeulders A W M, Worring M, Santini S,et al. Content-based image retrieval at the end of the early years [ J ]. IEEE Trans. Pattern Recog- nit. Machine Intell, 2000, 22(12) :1349 - 1380.
  • 2Do M N,Vetterli M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance [ J ]. IEEE Trans. Im- age Processing, 2003,11 (2) :146 - 158.
  • 3Stricker M, Swain M. The capacity of color histogram indexing[ C]// Proc. Computer and pattern recognition, 1994:704 - 708.
  • 4Saha P K, Udupa J K. Tensor scale-based fuzzy connectednessimage segmentation [ C ]//Proceedings of SPIE : 2003,5032 : 1580 - 1590.
  • 5Saha P. Tensor Scale: a local morphometric parameter with applications to computer vision and image processing[ J ]. Computer Vision and Image Un- derstanding,21305,99 (3) :354- - 413.
  • 6Miranda P, Tortes R da S, Falcao A. TSD: a shape descriptor based on a distribution of tensor scale local orientation[ C ]//Proc. of the Brazilian Symposium on Computer Graphics and Image Processing, 2005:139-146.
  • 7Falcao A X, Stolfi J, Lotufo R A. The image foresting transform: theory, algorithms, and applications[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 ( 1 ) : 19 - 29.

同被引文献13

  • 1Weinland D,Ronfard R,Boyer E.A survey of vision-based methods for action representation,segmentation and recognition[J].Computer Vision and Image Understanding,2011,115(2):224-241.
  • 2Zhang D,Lu G.Review of shape representation and description techniques[J].Pattern recognition,2004,37(1):1-19.
  • 3Shu X,Wu X J.A novel contour descriptor for 2D shape matching and its application to image retrieval[J].Image and vision Computing,2011,29(4):286-294.
  • 4Singh C.An effective image retrieval using the fusion of global and local transforms based features[J].Optics&Laser Technology,2012,44(7):2249-2259.
  • 5Goyal A,Walia E.An analysis of shape based image retrieval using variants of Zernike moments as features[J].International Journal of Imaging&Robotics,2012,7(1):44-69.
  • 6Khotanzad A,Hong Y H.Invariant image recognition by Zernike moments[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,1990,12(5):489-497.
  • 7Bin Y,Jiaxiong P.Invariance analysis of improved Zernike moments[J].Journal of Optics A:Pure and Applied Optics,2002,4(6):606.
  • 8Duda R O,Hart P E.Use of the Hough transformation to detect lines and curves in pictures[J].Communications of the ACM,1972,15(1):11-15.
  • 9de Souza G B,Marana A N.HTS:A new shape descriptor based on Hough Transform[C]//2013 IEEE International Symposium on.IEEE,2013:974-977.
  • 10Ogawa K,Ito Y,Nakano K.Efficient canny edge detection using a gpu[C]//Networking and Computing(ICNC),2010 First International Conference on.IEEE,2010:279-280.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部