期刊文献+

基于数据挖掘技术的购物篮模式研究 被引量:9

STUDY ON MARKET BASKET PATTERN BASED ON DATA MINING TECHNIQUE
下载PDF
导出
摘要 基于顾客购物篮的分析提出一种新的基于虚拟变量的数据挖掘方法。该方法结合因子分析、聚类和关联规则挖掘技术。首先通过因子分析方法从众多的实变量中标识出影响顾客购买决定的少数几个虚拟变量,其次利用聚类分析对顾客划分成若干簇,最后运用关联规则分析获取每一簇中对象之间隐藏的模式。通过在一个零售业的案例中进行实施,表明了该方法的有效性。 This paper presents a new data mining method based on virtual variables in light of market basket analysis.This method consists of factor analysing,clustering and association rules mining.Firstly,people exploit factor analysis to identify a few effective virtual factors which influence customers' purchasing choices from many original variables.And then they utilise clustering analysis to divide the customers into clusters.Finally,they use association rules to acquire the hidden patterns in each cluster.A case study in a retailer store demonstrates the effectiveness of their proposed method.
作者 李爱凤
出处 《计算机应用与软件》 CSCD 2011年第12期156-158,共3页 Computer Applications and Software
关键词 数据挖掘 购物篮分析 虚拟变量 关联规则 Data mining Market basket analysis Virtual variables Association rules
  • 相关文献

参考文献7

  • 1Han Jiawei ,Kamber M. Data mining concepts and techniques [ M ], San Francisco: Morgan Kaufmann Publishers ,2005.
  • 2杨宇音,赵雅明,曲立敏.因子分析法在大学生综合排名中的应用[J].贵州工业大学学报(自然科学版),2005,34(1):9-13. 被引量:21
  • 3王建会,申展,胡运发.一种实用高效的聚类算法[J].软件学报,2004,15(5):697-705. 被引量:26
  • 4程舒通,徐从富.关联规则挖掘技术研究进展[J].计算机应用研究,2009,26(9):3210-3213. 被引量:14
  • 5Berzal F, Cubero J, Mar In N. TBAR: An efficient method for association rule mining in relational databases [ J ]. Data and Knowledge Engineer- ing,2001,37( 1 ) : 47 - 64.
  • 6Michaud P. Clustering techniques [J]. Future Generation Computer Sys- tem,1997,13(2) :135 - 147.
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[ C ]//Proceedings of the ACM SIGMOD Conference on Management of data. 1993:207 -216.

二级参考文献29

  • 1王俊峰,杨建华,周虹霞,谢高岗,周明天.网络测量中自适应数据采集方法(英文)[J].软件学报,2004,15(8):1227-1236. 被引量:11
  • 2AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1993 : 207-216.
  • 3AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[C]//Proc of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994: 478-499.
  • 4PARK J S, CHEN M S, YU P S. Using a hash based method with transaction trimming for mining association rules [ J ]. IEEE Trans on Knowledge and Data Engineering, 1997, 9(5) :813-825.
  • 5BRIN S, MOTWANI R, ULLMAN J D, et al. Dynamic itemset counting and implication rules for market basket data [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1997: 255-264.
  • 6MANNILA H, TOIVONEN H, VERKAMO A I. Efficient algorithms for discovering association rules[ C ]//Proc of the AAAI Workshop on Knowledge Discovery in Databases. Washington: AAAI Press, 1994: 181-192.
  • 7TOIVONEN H. Sampling large databases for association rules [ C ]// Proc of the 22nd International Conference on Very Large Data Bases. Sam Francisco: Morgan Kaufmann Publishers, 1996: 134-145.
  • 8HAN Jia-wei, PEI Jian, YIN Yi-wen. Mining frequent patterns without candidate generation [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York : ACM Press, 2000 : 1-12.
  • 9GRAHNE G, ZHU Jian-fei. Efficiently using prefix-trees in mining frequent itemsets [ C ]//Proc of IEEE ICDM Workshop on Frequent Itemset Mining Implementations. 2003.
  • 10PIEPRZYK J, MORZY M. Mining generalized association roles using prutax and hierarchical bitmap index [ EB/OL ]. [ 2009-02-19]. http://www, cs. put. poznan, pl/mmorzy/papers/admkd07, pdf.

共引文献58

同被引文献81

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部