期刊文献+

RL_Spider:一种自主垂直搜索引擎网络爬虫 被引量:2

RL_Spider: AN INDEPENDENT VERTICAL SEARCH ENGINE WEB CRAWLER
下载PDF
导出
摘要 在分析相关spider技术的基础上,提出了将强化学习技术应用到垂直搜索引擎的可控网络爬虫方法。该方法通过强化学习技术得到一些控制"经验信息",根据这些信息来预测较远的回报,按照某一主题进行搜索,以使累积返回的回报值最大。将得到的网页存储、索引,用户通过搜索引擎的搜索接口,就可以得到最佳的搜索结果。对多个网站进行主题爬虫搜索,实验结果表明,该方法对于网络的查全率和查准率都具有较大的提高。 Based on the analysis of related spider techniques,the approach for applying reinforcement learning technology to controllable web crawler of vertical search engine is proposed in the paper.It predicts the future reward based on some control "experience information" obtained through reinforcement learning,focuses on specific topic search to maximise the accumulated returned reward value.By storing and indexing the searched web pages,users can search through search interface provided by search engine to gain the optimal search results.The topic crawler searches have been executed on various websites,experimental results show the obvious enhancement in the recall and precision of the web.
出处 《计算机应用与软件》 CSCD 2011年第12期183-187,共5页 Computer Applications and Software
关键词 可控强化学习 垂直搜索引擎 网络爬虫 Controllable reinforcement learning Vertical search engine Web spider
  • 相关文献

参考文献9

  • 1De Bra P, Post R. Information retrieval in the World-Wide Web: mak- ing client-based searching feasible[J]. Journal on Computer Networks and ISDN Systems, 1994,27 : 183 - 192.
  • 2Bowling M. Convergence and no-regret in multiagent learning [ C ]// Advances in Neural Information Processing System 17. New York: MIT Press, 2004:209 -216.
  • 3Srinivasan P, Pant G, Fenczer F. Target seeking crawling and their topical performance [ C ]//Proc of SIGIR Conference on Research and Development in Informance Retrieval, ACM press 2002.
  • 4Aggarwal C, AI-Garawi F, Yu S P. Intelligent crawling on the World Wide Web with arbitrary Predicates [ C ]//Proc of the 10th Internation- al World Wide Web Conference,2001.
  • 5Chakrabarti S, van den Berg M, Dom B. Focused crawling: a new ap- proach to topic-specific Web resource discovery [ J ]. Computer Net- work, 1999,31 ( 11 - 16) : 1623 - 1640.
  • 6Rennie J, McCallum A. Using reinforcement learning to spider the Web efficiently [ C ]//Bled, Slovenia: The Sixteenth International Conference on Machine Learning, 1999.
  • 7Capi, Genci, Doya, Kenji. Application of evolutionary computation for efficient reinforcement learning [ J ]. Applied Artificial Intelligence, 2006,20( 1 ) :536 -546.
  • 8高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100. 被引量:268
  • 9Liu Quan, Gao Yang, Cui Zhiming,et al. An Tableau Automated The- orem Proving Method Using Logical Reinforcement Learning[ C]//Ad- vances in Computation and Intelligence, 2007, LNAI, 4683.

二级参考文献4

共引文献267

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部