期刊文献+

随机产出下两级供应链供需双方的博弈 被引量:9

Game Analysis of a Two-Echelon Supply Chain with Random Yield
下载PDF
导出
摘要 研究和分析了随机产出下两级供应链供需双方的三种博弈模型:销售商主导的Stackelberg博弈模型、生产商主导的Stackelberg博弈模型和纳什博弈模型,得到了在这3种博弈模型下的最优订购量和最优计划生产量,通过研究发现:当销售商在供应链决策中占主导地位时的最优订购量和最优计划生产量都大于其他2种情况下的对应值。最后,通过数值计算比较了在随机产出服从均匀分布时,这3种博弈下供需双方的最优策略及相应利润,并得出了选择销售商占主导地位的Stackelberg博弈行为将有利于商家获取更多利润的重要结论。 We study three game models of a two-echelon supply chain with random yield: retailer-leader Stackelberg game model,manufacturer-leader Stackelberg game model and Nash game model,and derive the optimal order quantity and optimal planned production quantity for these models,The findings indicate that when the retailer dominates the supply chain,the optimal order quantity and optimal planned production quantity is greater than those in other models.A numerical example is given to compare the optimal policies and relevant profits between both parties based on those game models when random yield obeys uniform distribution.An important conclusion is that retailerleader Stackelberg game model is better for supply chain to make more profit.
作者 朱琳 王圣东
出处 《系统管理学报》 CSSCI 北大核心 2011年第6期734-738,743,共6页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71072165)
关键词 随机产出 计划生产量 订购量 博弈 random yield planned production quantity order quantity game
  • 相关文献

参考文献9

二级参考文献108

共引文献158

同被引文献81

  • 1黄祖辉,鲁柏祥,刘东英,吕佳.中国超市经营生鲜农产品和供应链管理的思考[J].商业经济与管理,2005(1):9-13. 被引量:75
  • 2王泽晖.含参变量函数积分求导的推广[J].大学数学,2005,21(3):104-105. 被引量:8
  • 3KARLIN S. One stage inventory models with uncertainty: Studies in the mathematical theory of inventory and production [M]. Stanford: Stanford University Press, 1958: 2-45.
  • 4NOORI A H, Keller G. One-period order quantity strategy with uncertain match between the amount received and quantity requisitioned [J]. INFOR, 1986, 24(I ): 1 - 11.
  • 5KEREN B. The single-period inventory problem: Extension to random yield from the perspective of the supply chain [J]. Omega, 2009, 37: 801-810.
  • 6Karlin S.One stage inventory models with uncertalnty:studies in the mathematical theory of inventory and production[M].Stanford:Stanford University Press,1958.
  • 7Shih W.Optimal inventories policies when stockouts result from defective products[J].Intemational Journal of Production Research,2002,18 (6):677-685.
  • 8Keren B.The single-perlod inventory problem:Extension to random yield from the perspective of the supply chain[J].Omega,2001,37:801-810.
  • 9He Y J,Zhang J.Random yield supply chain with a yield depandent secondary market[J].European Journal of Operational Research,2010,206 (1):221-230.
  • 10Yunzeng Wang,Li Jiang,Zuojun Shen.Channel performance under consignment contract with revenue sharing[./].Management Science,2004,50(1):34-47.

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部