期刊文献+

混沌时间序列法在地下水位预测中的应用 被引量:2

Application of Chaos Time Series Method in Groundwater Table Prediction
下载PDF
导出
摘要 在相空间重构的基础上,并借助G-P(Grassberger-Procaccia)算法、C-C方法和Wolf方法分别从濮阳市范县、华龙区和南乐县中的某观测孔的地下水位一维时间序列中提取lyapunov指数,通过对地下水时间序列的混沌特性识别,表明其时间序列具有混沌特征。然后运用加权一阶局域法对地下水位时间序列进行预测。结果表明,该模型用于地下水位时间序列的短期预测是可行和有效的。 Applying G-P (Grassberger-Procaccia)arithmetic, C-C arithmetic (the improved method) and Wolf method based on phase space reconstruction method, Lyapunov exponents are distilled from one-dimension time series of underground water table in Fanxian County, Hualong District and NaMe County of Puyang City. The results indicate that this time series possesses the character of chaos. Then, an adding-weight one-rank local-region forecasting model is developed for the prediction of underground water table. The results show that the model is feasible and valid for the short term prediction of the time series of underground water table.
作者 陈南祥 魏杰
出处 《水利与建筑工程学报》 2011年第6期1-4,共4页 Journal of Water Resources and Architectural Engineering
基金 国家科技支撑计划项目(2006BAD11B09-2)
关键词 混沌时间序列 相空间重构 最大LYAPUNOV指数 关联维数 地下水位 chaos time series phase space reconstruction lyapunov exponent correlation dimension underground water table
  • 相关文献

参考文献8

  • 1Packard N H. Geometry from a time series [ J ]. Physica Rev Lett, 1980,45(9) :712-716.
  • 2宋宇,陈家军,孙雄.地下水水位时间序列中的混沌特征[J].水文地质工程地质,2004,31(1):14-18. 被引量:24
  • 3洪家宝,陈镠芬.沉井施工降水时地下水的动态分析[J].水利与建筑工程学报,2008,6(4):54-57. 被引量:7
  • 4Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows [ J ]. Physica D, 1999,127 ( 1- 2) :48-60.
  • 5Grassberger P, Pocaccia I. Measuring the strangeness of strange attractors[J]. Physics D, 1983,9(4):189-208.
  • 6Wolf A, Swirl J B, Swinney H L, et al. Determining Lya- punov exponents from a time series[J]. Physica D, 1985,16 (9) :285-317.
  • 7Shang P G, Li X W, Santi K. Chaotic analysis of traffic time series[J]. Chaos, Solitions & Fractals, 2005,25 ( 1 ) : 121- 128.
  • 8陈伏龙,郑旭荣,何新林,杨广,刘兵.莫索湾灌区1998—2007年地下水埋深变化及影响因素[J].武汉大学学报(工学版),2011,44(3):317-320. 被引量:14

二级参考文献16

共引文献42

同被引文献34

  • 1王文圣,向红莲,赵东.水文序列分形维数估计的小波方法[J].四川大学学报(工程科学版),2005,37(1):1-4. 被引量:12
  • 2刘庆军,王雅华,李继伟.地下水位时间序列的混沌特征分析[J].人民黄河,2007,29(9):40-42. 被引量:4
  • 3Ghorbani M A, Kisi O, Aalinezhad M. A probe into the chaotic nature of daily stream flow time series by correlation dimension and largest Lyapunov method[ J]. Applied Mathematical Modeling, 2010, 34(12) :4050 -4057.
  • 4Steffen Zeeb, Thomas Dahms, Valentin Flunkert, et al. Discontinuous attractor dimension at the synchronization transition of time- delayed chaotic systems[ J ]. Physical Review E, 2013, 87 (4) : 042910.
  • 5Georg A Gottwald, Lan Melbourne. A new test for chaos in deterministic systems[ J]. Proceedings of the Royal Society A, 2004, 460 (2042) :603 - 611.
  • 6Georg A Gottwald, Lan Melbourne. On the implementation of the 0 - 1 test for chaos [J]. SIAM Journal on Applied Dynamical Systems, 2009, 8 ( 1 ) : 129 - 145.
  • 7Georg A Gottwald, Lan Melbourne. Testing for chaos in deterministic systems with noise [ J ]. Physica D : Nonlinear Phenomena, 2005, 212(1 -2) :100- 110.
  • 8Ian Falconer, Georg A Gottwald, Lan Melbourne. Application of the 0 - 1 test for chaos to experimental data[ J]. Society for Industrial and Applied Mathematics, 2007, 6 (2) :395 - 402.
  • 9Grzegorz Litak, Arkadiusz Syta, Marian Wiercigroch. Identification of chaos in a cutting process by the 0 - 1 test[ J]. Chaos, Solitons & Fractals, 2009, 40 ( 5 ) :2095 - 2101.
  • 10Blaz Krese, Edvard Govekar. Nonlinear analysis of laser droplet generation by means of 0 - 1 test for chaos[J]. Nonlinear Dynamics, 2012, 67(3):2101 -2109.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部