期刊文献+

毛细管微通道内流动法连续合成亚微纳米分子筛 被引量:2

Continuous-flow Synthesis of Submicron and Nano-zeolites in Capillary Microchannel Reactor
下载PDF
导出
摘要 采用毛细管式微通道反应器,研究了清液合成体系中流动法条件下亚微纳米级NaA和Silicalite-1沸石分子筛的合成,考察了合成温度、陈化时间、停留时间等条件对其粒径分布和形貌的影响.通过XRD、TEM、DLS进行表征,分析结果表明:降低合成温度,增加陈化时间和减少停留时间都能使分子筛产品的粒径变小.经优化的合成条件分别是:当合成温度为70℃、陈化时间为72h、停留时间为5.8h时,可获得平均粒径约为100nm的NaA分子筛,且晶粒均匀呈椭球形;合成温度为98℃、陈化时间为24h、停留时间为10h时,可获得平均粒径约为80nm的Silicalite-1分子筛.该方法比常规合成釜内静态法制备的沸石粒子小而均匀,且合成过程简单、连续. Continuous synthesis of NaA and Silicalite-1 submicron and nanoparticles was prepared in a capillary microchannel reactor from clear solutions.The X-ray diffraction(XRD),Transmission Electron Microscope(TEM) and Dynamic Light Scatter(DLS) measurements were used to investigate the effects of different synthesis parameters on the particle size distribution and morphology,including reaction temperature,aging time and residence time.It was indicated that smaller mean particle size and narrower particle size distribution of the products was obtained with lower reaction temperature,longer aging time and shorter residence time during the synthesis process.At the synthesis temperature of 343K,aging time of 72h and residence time of 5.8h,the NaA zeolite crystal with mean particle size of about 100nm was prepared.And at the synthesis temperature of 371K,aging time of 24h and residence time of 10h,the Silicalite-1 zeolite crystal with mean particle size of around 80nm was obtained.The present method offers a novel route for preparing submicro and nano zeolite particles.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2011年第12期1304-1308,共5页 Journal of Inorganic Materials
基金 辽宁省教育厅高校重点实验室项目(2009S019) 辽宁省高等学校优秀人才支持计划项目(LR201008) 国家大学生创新实验计划项目(2009025)~~
关键词 微通道反应器 流动法合成 分子筛 纳米材料 沸石 microreactor continuous-flow synthesis molecular sieve nanomaterial zeolite
  • 相关文献

参考文献15

  • 1Tosheva L,Valtchev V P.Nanozeolites:synthesis,crystallization mechanism,and applications.Chem.Mater.,2005,17(10):2494-2513.
  • 2王亚军,唐颐,王星东.纳米沸石的合成、性质、组装及应用[J].石油化工,2002,31(3):217-223. 被引量:34
  • 3Schoeman B J,Sterte J,Otterstedt J E.Colloidal zeolite suspensions.Zeolites,1994,14(2):110-116.
  • 4Ravishankar R,Kirschhock C,Schoeman B J,et al.Physicochemical characterization of silicalite-1 nanophase material.J.Phys.Chem.B,1998,102(15):2633-2639.
  • 5Zhang X F,Liu H O,Yeung K L.Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth.Mater.Chem.Phys.,2006,96(1):42-50.
  • 6Mintova S,Olson N H,Valtchev V,et al.Mechanism of zeolite:a nanocrystal growth from colloids at room temperature.Science,1999,283(5404):958-960.
  • 7Madsen C,Jacobsen C J H.Nanosized zeolite crystals - convenient control of crystal size distribution by confined space synthesis.Chem.Commun.,1999,8:673-674.
  • 8石春艳,蒋晖,张雄福.沸石及其膜在微型设备中的制备与应用进展[J].现代化工,2006,26(z1):30-33. 被引量:2
  • 9Yang H W,Luan W L,Tu S T,et al.Synthesis of nanocrystals via microreaction with temperature gradient:towards separation of nucleation and growth.Lab on a Chip,2008,8(3):451-455.
  • 10唐林生,苏明阳.利用微通道反应器制备纳米粒子的最新研究进展[J].现代化工,2009,29(7):22-26. 被引量:4

二级参考文献72

  • 1张雄福,刘海鸥,King-Lun Yeung,王金渠.澄清溶液体系二次生长法NaA型沸石膜的生长机制及膜厚的控制合成[J].高等学校化学学报,2005,26(5):806-810. 被引量:7
  • 2Cushing B L,Kolesnickenlo V L,O'Connor C J.Recent edvances in the liquid-phase syntheses of inorganic run.ties[J].Chem Rev,2004,104(9):3893-3946.
  • 3Mantzaris N V.Liquid-phase synthesis of nanoparticles:Particle size distribution dynumics and control[J].Chem Eng SOi,2005,60(17):4749-4770.
  • 4Ehrfeld W,Lowe H,Hessel V.Microreactors:New technology for madem chemistry[M].Weinheim:Wiley-VCH,2000.
  • 5Ying Y,Chen G W,Zhao Y C,et al.A high throughput methodology for continuouss preparation of monodispersed nanocrystals[J].Chem Bng J,2008,135(3):209-215.
  • 6Shestopalov I,Tice J D,lsmagilov R F.Malti-step synthesis of nanopartides pedormed on millisecond time scale in a microiluidic dropletbaaed system[J].Lab Chip,2004,4(4):316-321.
  • 7Nakamura H,Tashiro A,Yamguchi Y,et al.Application of a microtluidic reaction system for CySe nnuocryslal preparation:Their growth kinetics and photoluminecence analysis[J].Lab Chip,2004,4(3):237-240.
  • 8Wang H Z,Nakamura H,gehara M,et al.Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor[J].Chem Commun,2002,14:1462-1463.
  • 9Wagner J,Kohler J M.Continuous synthesis of grid nanoparticles in a microreactor[J].Nano Iett,2005,5(4):685-691.
  • 10Lin X Z,Terepka A D,Yang H.Synthesis of silver nanoparticles in a continuous flow tabular microrector[J].Nano Lett,2004,4(11):2227-2232.

共引文献37

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部