期刊文献+

基于FTMP特征的小波域非监督纹理分割新算法 被引量:1

A Novel Unsupervised Texture Segmentation Algorithm Based on FTMP in Wavelet Domain
下载PDF
导出
摘要 为了能够在非监督环境下利用有限纹理混合模式(finite texture mixture pattern,FTMP)特征进行图像分割,提出了一种基于两步聚类的小波域非监督纹理分割算法。该算法通过两步Kmeans聚类来实现多尺度纹理分割。第一步Kmeans聚类计算每一子带的PLVP及对应的FTMP特征;第二步Kmeans则对每一尺度的FTMP特征进行聚类,从而计算各尺度的分割结果。为了获取更为可靠的分割结果,算法考虑了不同尺度之间的交互。合成纹理影像和遥感影像的分割实验验证了该算法的有效性。 In order to segment textures in the unsupervised circumstance based on the finite texture mixture pattern ( FTMP), a new unsupervised texture image segmentation algorithm was proposed based on the two - step clustering in wavelet domain. It employed a two - step Kmeans algorithm to complete the mutiscale texture segmentation. The first - step Kmeans calculated the PLVP and the FTMP feature on each scale. And the second - step Kmeans obtained the segmentation result on each scale by the clustering of FTMP feature. In order to achieve more reliable segmentation results,interactions between different scales were considered. The effectiveness of this method was testified by experiments on both synthetic texture images and remote sensed images.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2011年第6期900-903,923,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(41001251 40971219) 河南省教育厅自然科学基金资助项目(2011B170001) 湖南省自然科学基金重点资助项目(10jj2050) 安阳师范学院青年骨干教师科研基金资助项目
关键词 小波域 FTMP 纹理分割 wavelet domain FTMP texture segmentation
  • 相关文献

参考文献3

二级参考文献28

  • 1Ryherd S,Woodcock C.Combining Spectral and Texture Data in the Segmentation of Remotely-Sensed Images [ J ].Photogrammetric Engineering & Remote Sensing, 1996, 62 (2) :181-194.
  • 2Chellappa R, Chatterjee S. Classification of Textures Using Gaussian Markov Random Fields [ J ]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (4) : 959-963.
  • 3Torres-Torriti M, Jouan A. Gabor vs. GMRF Features for SAR Imagery Classification [ A ]. ICIP [ C ]. 2001, (3) : 1043-1046.
  • 4Clausi D A, Bing Yue. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42( 1 ) : 215-228.
  • 5Rellier G, Descombes X, Falzon F, et al. Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (7) : 1543-1551.
  • 6Chellappa R, Hu Y H, Kung S Y. On Two-Dimensional Markov Spectral Estimation[ J]. IEEE Transactions on Acoustics, Speech,and Signal Processing, ASSP , 1983, 31(4) : 836-841.
  • 7Tseng D C, Lai C C. A Genetic Algorithm for MRF-Based Segmentation of Multispectral Textured Images [ J ]. Pattern Recognition Letters, 1999, 20 : 1499-1510.
  • 8Sharma G, Chellappa R. A Model-Based Approach for Estimation of Two-Dimensional Maximum Entropy Power Spectra [ J ]. IEEE Transactions on Information Theory, 1985, 31( 1 ) : 90-99.
  • 9Chee S W, Derln H. Maximum Likelihood Estimation of Gaussian Markov Random Field Parameters [ A ]. ICASSP [ C ].1988, (2) : 1040-1043.
  • 10.FG Forrest[EB/OL].http://textures.forrest. cz/,2004.

共引文献69

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部