期刊文献+

基于量子遗传算法优化神经网络的入侵检测 被引量:2

Intrusion Detection Based on Neural Network Optimized by Quantum Genetic Algorithm
下载PDF
导出
摘要 针对入侵检测的效率及准确性问题,提出一种基于量子遗传算法优化神经网络的入侵智能检测模型,该模型基于量子遗传算法的全局搜索和神经网络局部精确搜索特性,将量子遗传算法和BP算法有机结合。利用改进的量子遗传算法优化BP神经网络的权重和阈值,使BP神经网络能快速准确地识别入侵,增强计算机网络安全。运用Matlab软件对该模型进行仿真。实验结果表明,与其他同类方法相比,该方法的检测率更高、误报率更低。 To solve the problem of efficiency and veracity of intrusion detection,this paper presents an intrusion detection model based on quantum genetic algorithm and neural network.The model takes advantage of the global search property of the quantum genetic algorithm and the exact local search characteristics of the BP neural network,and combines quantum genetic algorithm and BP neural network.The weight and the thresholds of the BP neural network are optimized by the improved quantum genetic algorithm,so that the BP neural network enhances efficiency and veracity of intrusion detection,thereby improving network security.Matlab emulating experiments of this model show this method is better than other kinds of methods in detection rate and false alarm rate.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第23期124-126,共3页 Computer Engineering
基金 湖南省科技计划基金资助项目(2010FJ6028) 湖南省教育厅重点科研基金资助项目(08A064) 湖南省高校科研基金资助项目(10C1236)
关键词 入侵检测 量子遗传算法 智能检测 BP神经网络 网络安全 intrusion detection quantum genetic algorithm intelligent detection BP neural network network security
  • 相关文献

参考文献5

二级参考文献46

  • 1Denning D. An intrusion detection model. IEEE Trans. on Software Engineering, 1987,13(2):222-232.
  • 2Forrest S. A sense of self for UNIX processes. In: Proc. of the IEEE Symp. on Security and Privacy. Oakland: IEEE Press, 1996. 120-128. http://www.cs.unm.edu/-forrest/publications/ieee-sp-96-unix.pdf
  • 3Hofmeyr SA, Forrest S, Somayaji A. Intrusion detection using sequences of system calls. Journal of Computer Security, 1998, 6(3):151-180.
  • 4Helman P, Bhangoo J. A statistically based system for prioritizing information exploration under uncertainty. IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans, 1997,27(4):449466.
  • 5Lee W, Stolfo SJ. Data mining approaches for intrusion detection. In: Proc. of the 7th USENIX Security Syrup. San Antonio, 1998. 26-40. http://www.usenix.org/publications/library/proceedings/sec98/full_papers/lee/lee.pdf
  • 6Lee W, Stolfo SJ, Chan PK. Learning patterns from UNIX process execution traces for intrusion detection. In: AAAI Workshop on AI Approaches to Fraud Detection and Risk Management. AAAI Press, 1997. 50-56. http://www.cc.gatech.edu/-wenke/papers/ osid paper.ps
  • 7Sekar R, Bcndre M, Bollineni P, Dhurjati D. A fast Automaton-Based method for detecting anomalous program behaviors. In: IEEE Symp. on Security and Privacy. Oakland: IEEE Press, 2001. 144-155. http://www.cc.gatech.cdu/-wcnkc/ids-readings/automaton. pdf
  • 8Feng HH, Kolesnikov OM, Fogla P, Lee W, Gong W. Anomaly detection using call stack information. In: Proc. of the 2003 IEEE Syrup. on Security and Privacy. Oakland: IEEE Press, 2003.62-75. http://www-unix.ecs.umass.edu/-gong/papers/ok_idpc.pdf
  • 9Wagner D, Dean D. Intrusion detection via static analysis. In: Proc. of the IEEE Symp. on Security and Privacy. Oakland: IEEE Press, 2001. 156-168. http://www.csl.sri.com/users/ddean/papers/oakland01.pdf
  • 10Giffin J, Jha S, Miller B. Detecting manipulated remote call streams. In: Proc. of the 11th USENIX Security Symp. San Francisco: 2002.61-79. http://www.cs.wise.edu/wisa/papers/security02/gjm02.pdf

共引文献81

同被引文献11

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部