期刊文献+

线性逼近SVM在入侵检测中的应用 被引量:1

Application of Linear Approximation SVM in Intrusion Detection
下载PDF
导出
摘要 引入分段线性识别算法,提出一种线性逼近支持向量机(SVM)入侵检测模型。将特征空间剖分成若干子空间,在每个子空间中基于SVM构造5个最优分类面,将各个分类面链接起来构成5个分片最优分类面以逼近理论上的最优分类超曲面。实验结果证明,该模型的训练时间较短,在噪声数据存在的情况下识别正确率较高。 Piecewise linear recognition algorithm is introduced in this paper,and an linear approximaiton Support Vector Machine(SVM) model for intrusion detection is proposed.In this model,the feature space is partitioned into several sub-space,the five best face are made in each sub-sector based on support vector classification,and then link together to form each of five categories face the optimal classification surface patch to approximate the theoretical optimal separating hyper surface.Experimental results show that the model needs short training time,and in the presence of noise data,it has high detection accuracy rate.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第23期132-134,共3页 Computer Engineering
基金 甘肃省教育厅科研基金资助项目(0613B-03)
关键词 入侵检测系统 分段线性识别 线性逼近 支持向量机 特征空间 intrusion detection system piecewise linear recognition linear approximation Support Vector Machine(SVM) feature space
  • 相关文献

参考文献5

二级参考文献26

  • 1秦玉平,王秀坤.一种改进的快速支持向量机分类算法研究[J].大连理工大学学报,2007,47(2):291-294. 被引量:6
  • 2[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 3[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 4[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 5[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 6[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 7[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.
  • 8Scholkopf B, Mika S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods. IEEE Trans. on Neural Networks, 1999, 10(5): 1000-1017.
  • 9Scholkopf B, Knirsch P, Smola A, et al. Fast Approximation of Support Vector Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature Space[M]//Levi P, Schanz M, Ahlers R J. Mustererkennung. London, UK: Springer-Verlag, 1998: 124-132.
  • 10Downs T, Gates K E, Masters A. Exact Simplification of Support Vector Solutions[J]. Journal of Machine Learning Research, 2001, 12(2): 293-297.

共引文献298

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部