期刊文献+

基于聚类和排序高斯混合模型的说话人确认

Speaker Validation Based on Clustering and Sorted Gaussian Mixture Model
下载PDF
导出
摘要 基于高斯混合模型(GMM)-通用背景模型(UBM)结构的说话人确认系统不能完全表现说话人的个性特征信息。为此,将聚类方法和排序高斯混合模型相结合,对每个高斯分量按照对应排序值顺序排列,并对UBM进行训练。基于NIST 06 8side-1side数据库的实验结果表明,该方法能在基本保持系统识别性能的前提下,降低UBM的训练运算量。 Gaussian Mixture Model(GMM)——universal background model is used for most of text-independent speaker validation systems in the past decade.This paper proposes a new structure of GMM——Sorted Gaussian Mixture Model,in which each Gaussian components in the universal background model are arranged in corresponding value order,it is an approach to combine with the clustering method to train UBM.Experiments on the 2006 NIST 8side-1side subset speaker recognition evaluation task show that after using this approach,the amount of calculation can be reduced,and under certain search width conditions,almost no reduction in recognition performance.
作者 余巍 李辉
出处 《计算机工程》 CAS CSCD 北大核心 2011年第23期162-164,共3页 Computer Engineering
关键词 说话人确认 高斯混合模型 通用背景模型 聚类 排序高斯混合模型 speaker validation Gaussian Mixture Model(GMM) Universal Background Model(UBM) clustering sorted GMM
  • 相关文献

参考文献5

  • 1Reynolds D A, Quatieri T F, Dunn R B. Speaker Verification Using Adapted Gaussian Mixture Models[J]. Digital Signal Processing, 2000, 10(1-3): 19-41.
  • 2王佳毅,张丽清.基于稀疏约束判别分析的说话人识别算法[J].计算机工程,2010,36(10):206-208. 被引量:1
  • 3Xiong Zhenyu, Zheng Fang. A Tree-based Kernel Selection Approach to Efficient Gaussian Mixture Model----Universal Background Model Based Speaker Identification[J]. Speech Communication, 2006, 48(10): 1273-1282.
  • 4Mohammadi H R S, Holmes W H. Low Cost Vector Quantization Methods for Spectral Coding in Low Rate Speech Coder[C]//Proc. of International Conf. on Acoustic Speech and Signal Processing. Detroit; USA: [s. n.], 1995: 720-723.
  • 5Saeidi R, Mohammadi H R S, Ganchev T, et al. Particle Swarm Optimization for Sorted Adapted Gaussian Mixture Models[J]. IEEE Trans. on Speech Audio Processing, 2009, 17(2): 344-353.

二级参考文献3

  • 1Fukunaga K.Introduction to Statistical Pattern Recognition[M].2nd ed.[S.l.]:Academic Press,1999.
  • 2Tao Dacheng,Li Xuelong,Wu Xindong,et al.General Tensor Discriminant Analysis and Gabor Feature for Gait Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(10):1700-1715.
  • 3Zass R,Shashua A.Nonnegative Sparse PCA[J].Advances in Neural Information Processing Systems,2006,18(19):1571-1568.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部