期刊文献+

基于Listwise的新型排序算法 被引量:3

Novel Ranking Algorithm Based on Listwise
下载PDF
导出
摘要 基于Pairwise的排序算法得到的判别式模型准确率较低。为此,提出一种基于Listwise的新型排序算法。采用判别式模型,将基于1-slack的支持向量机作为算法框架,定义算法的优化目标。由于该目标的约束条件太多,难以直接优化,因此使用割平面法求解。对于算法内部寻找最违背排列的子问题,将其看作一个线性指派问题,采用匈牙利法求解。在基准数据集上的实验结果验证该算法的有效性和稳定性。 The discriminant model learned by traditional ranking algorithm based on Pairwise method is not accurate.Aiming at the above problem,a novel ranking algorithm based on Listwise method is proposed.The algorithm uses the discriminative model and adopts one-slack Support Vector Machine(SVM) as its framework.On this basis,the algorithm defines its objective function.In order to solve the problem of exponential size of constraints in the optimization,a cutting plane algorithm is introduced.For the sub-problem of finding the most violated constraints,the paper presents to view it as a linear assignment problem,and adopts Hungarian method to solve it.Experimental results on the benchmark datasets prove the effectiveness and stability of the algorithm.
作者 程凡 李龙澍
出处 《计算机工程》 CAS CSCD 北大核心 2011年第23期165-167,共3页 Computer Engineering
基金 教育部人文社科青年基金资助项目(10YJC630398) 安徽省自然科学基金资助项目(090412054) 安徽省科技攻关计划重大科技专项基金资助项目(08010201002)
关键词 排序算法 结构化学习 Listwise法 支持向量机 匈牙利法 ranking algorithm structured learning Listwise method Support Vector Machine(SVM) Hungarian method
  • 相关文献

参考文献6

  • 1艾伟,孙四明,张峰.基于本体的Web文本挖掘与信息检索[J].计算机工程,2010,36(22):75-77. 被引量:8
  • 2Herbrich R, Grapel T, Obermayer K. Large Margin Rank Boundaries for Ordinal Regression[M]. Cambridge, USA: MIT Press, 2000: 115-132.
  • 3Joachims T. Optimizing Search Engines Using Click Through Data[C]//Proc. of Conference on Knowledge Discovery and Data Mining. Edmonton, Canda: ACM Press, 2002:134-142.
  • 4Cao Zhe, Qin Tao, Liu Tieyan, et al. Learning to Rank: From Pairwise Approach to Listwise Approach[C]//Proc. of ICML'07. Corvallis, USA: [s. n.], 2007: 129-136.
  • 5Qin Tao, Zhang Xudong. Query-level Loss Functions for Information Retrieval[J]. Information Processing & Management, 2007, 44(2): 838-855.
  • 6Teo Choon-Hui, Smola A, Vishwanathan S V N. A Scalable Modular Convex Solver for Regularized Risk Minimization[C]// Proc. of International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: [s. n.], 2007: 48-57.

二级参考文献6

共引文献7

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部