期刊文献+

高维主存的反向K最近邻查询及连接 被引量:1

High-dimensional Main-memory Reverse K Nearest Neighbor Query and Join
下载PDF
导出
摘要 对高维主存的反向K最近邻(KNN)查询进行研究,提出一种△-RdKNN-tree索引结构。通过在该索引结构上进行主存KNN自连接,预处理数据集中点的KNN距离信息。将这些距离扩展到索引的各层节点中,基于该索引设计高维主存的反向KNN查询算法以及反向KNN连接算法。分析结果表明,该算法在高维空间中是有效的。 The Reverse K Nearest Neighbor(RKNN) problem is a generalization of the reverse nearest neighbor problem which receives increasing attention recently, but high-dimensional RKNN problem is little explored. This paper studies on the high-dimensional main-memory RKNN queries, proposes an indexing structure called A-RdKNN-tree, precomputes KNN distances of points in the dataset by main-memory KNN self-join based on this index and propagates these distances to higher level index nodes. Main-memory RKNN query algorithm based on this index is proposed and main-memory RKNN join algorithm is given for set-oriented RKNN queries. Analysis shows that the two algorithms are effective in high dimension space.
作者 刘艳 郝忠孝
出处 《计算机工程》 CAS CSCD 北大核心 2011年第24期22-24,共3页 Computer Engineering
基金 黑龙江省自然科学基金资助项目(F2006-01)
关键词 高维 主存 反向K最近邻查询 反向K最近邻连接 预处理 high-dimensional main-memory Reverse K Nearest Neighbor(RKNN) query Reverse K Nearest Neighbor(RKNN)join preprocessing
  • 相关文献

参考文献2

二级参考文献16

  • 1Bohm C,Krebs F.The k-nearest neighbor join:Turbo charging the kdd process[J].Knowledge and Information Systems (KAIS).Berlin:Springer,2004,6(6):728-749.
  • 2Bohm C,Krebs F.Supporting kdd applications by the k-nearest neighbor join[G] //LNCS 2736:Proc of the 14th Int Conf on Database and Expert Systems Applications (DEXA).Berlin:Springer,2003:504-516.
  • 3Xia C,Lu J,Ooi B C,et al.GORDER:An efficient method for KNN join processing[C] //Proc of the 30th Int Conf on Very Large Data Bases(VLDB04).San Francisco,CA:Morgan Kaufmann,2004:756-767.
  • 4Cui Y,Cui B,Wang S,et al.Efficient index-based KNN join processing for high-dimensional data[J].Information and Software Technology.2007,49(4):332-344.
  • 5Cui B,Ooi B C,Su J W,et al.Indexing high-dimensional data for efficient in-memory similarity search[J].IEEE Trans on Knowledge and Data Engineering,2005,17(3):339-353.
  • 6Cui B,Ooi B C,Su J W,et al.Contorting high dimensional data for efficient main memory processing[C] //Proc of the ACM SIGMOD Int Conf on Management of Data.New York:ACM,2003:479-490.
  • 7Jolliffe I T.Principal Component Analysis[M].Berlin:Springer,1986.
  • 8Bohm C.A cost model for query processing in high dimensional data spaces[J].ACM Trans on Database Systems,2000,25(2):129-178.
  • 9Jin H,Ooi B C,Shen H T,et al.An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing[C] //Proc of the 19th Int Conf on Data Engineering.Los Alamitos,CA:IEEE Computer Society,2003:87-98.
  • 10Chávez E,Navarro G,Baega-Yates R,et al.Searching in Metric Spaces[J].ACM Computing Surveys,2001,33(3): 273-321.

共引文献7

同被引文献13

  • 1CHEEMA M A, LIN Xue-min, WANG Wei, et al. Prebabilistic reverse nearest neighbor queries on uncertain data[J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22 (4) : 550-564.
  • 2KORN F, MUTHUKRISHNAN S. Influence sets based on reverse nea- rest neighbor queries[J]. ACM SIGiMOD Record, 2000, 29(2) : 201-212.
  • 3CHEEMA M A, ZHANG Wen-jie, L/N Xue-min, et al. Continuous reverse K-nearest neighbors queries in euclidean space and in spatial networks[J]. The International Journal on Very Large Data Ba- ses, 2012, 21 (1) : 69-95.
  • 4TAd Yu-fei, PAPADIAS D, LIAN Xiang. Reverse KNN search in ar- bitrary dimensionality [ C ]//Proc of the 30th International Conference on Very Large Data Bases. [ S. 1. ] : VLDB Endowment, 2004 : 744- 755.
  • 5LIAN Xiang, CHEN Lei. Efficient processing of probabilistic reverse nearest neighbor queries over uncertain data[ J]. The International Journal on Very Large Data Bases, 2009, 18(3) : 787-808.
  • 6EMRICH T, KRIEGEL H P, KROGER P, et al. Boosting spatial pruning: on optimal pruning of MBRs [ C ]//'Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2010 : 39-50.
  • 7LI Jian, DESHPANDE A. Consensus answers for queries over proba- hilistic databases [ C ]//Proc of the 28th ACM SIGMOD-SIGACT-SI- GART Symposium on Principles of Database Systems. New York: ACM Press, 2009: 259-268.
  • 8KIM Y J, PATEL J. Performance comparison of the t rm R t ^ 1 ast I - tree and the quadtree for KNN and distance join queries [ J ]. IEEE Trans on Knowledge and Data Engineering, 2010, 22 (7): 1014-1027.
  • 9BERNECKER T, KRIGEGL H P, MAMOULIS N, et al. Scalable probabilistic similarity ranking in uncertain databases [ J ]. IEEE Trans on Knowledge and Data Engineering, 2010, 22 (9): 1234 - 1246.
  • 10董军,杨秀娟.移动对象的动态反向k最近邻研究[J].计算机工程与应用,2009,45(6):155-157. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部