摘要
结合以成对约束形式给出的监督信息和无监督信息,提出一种基于成对约束和稀疏保留的数据降维算法。通过成对约束信息进行鉴别分析,利用稀疏表示方法保留数据集在变换空间中的全局稀疏结构。实验结果表明,与传统特征抽取算法相比,该算法的识别效果更好,需要调节的参数更少,且鲁棒性较高。
This paper presents a dimensionality reduction algorithm based on pair-wise constraints and sparsity preserving. It combines some supervised information in the form of pair-wise constraints and large number of unsupervised information. It uses pair-wise constraints to discriminant analysis and uses sparse representation to preserve the sparse reconstructive structure in the transformed space. Compared with the traditional feature extraction method, this algorithm has a better recognition impact, lower parameters, and better robustness.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第24期193-194,197,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60875004)
江苏省自然科学基金资助项目(BK2009184)
江苏省高校自然科学基金资助项目(10KJB510027
07KJB520133)
关键词
稀疏保留
机器学习
特征提取
人脸识别
sparsity preserving
machine learming
feature extraction
face recognition