期刊文献+

基于成对约束和稀疏保留的数据降维算法

Dimensionality Reduction Algorithm Based on Pair-wise Constraints and Sparsity Preserving
下载PDF
导出
摘要 结合以成对约束形式给出的监督信息和无监督信息,提出一种基于成对约束和稀疏保留的数据降维算法。通过成对约束信息进行鉴别分析,利用稀疏表示方法保留数据集在变换空间中的全局稀疏结构。实验结果表明,与传统特征抽取算法相比,该算法的识别效果更好,需要调节的参数更少,且鲁棒性较高。 This paper presents a dimensionality reduction algorithm based on pair-wise constraints and sparsity preserving. It combines some supervised information in the form of pair-wise constraints and large number of unsupervised information. It uses pair-wise constraints to discriminant analysis and uses sparse representation to preserve the sparse reconstructive structure in the transformed space. Compared with the traditional feature extraction method, this algorithm has a better recognition impact, lower parameters, and better robustness.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第24期193-194,197,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60875004) 江苏省自然科学基金资助项目(BK2009184) 江苏省高校自然科学基金资助项目(10KJB510027 07KJB520133)
关键词 稀疏保留 机器学习 特征提取 人脸识别 sparsity preserving machine learming feature extraction face recognition
  • 相关文献

参考文献6

  • 1邓超,郭茂祖.基于Tri-Training和数据剪辑的半监督聚类算法[J].软件学报,2008,19(3):663-673. 被引量:30
  • 2Mahdieh S B, Saeed B S. Non-linear Metric Learning Using Pairwise Similarity and Dissimilarity Constraints and the Geometrical Structure of Data[J]. Pattern Recognition, 2010, 43(8): 2982-2992.
  • 3郭锋,刘丽丽,吕凝.基于LLE和SVM的人像识别方法[J].吉林大学学报(信息科学版),2008,26(1):48-54. 被引量:13
  • 4Xiang Shiming, Nie Feiping, Zhang Changshui. Learning a Ma- halanobis Distance Metric for Data Clustering and Classi- fication[J]. Pattern Recognition, 2008, 41(12): 3600-3612.
  • 5畅雪萍,郑忠龙,谢陈毛.基于稀疏表征的单样本人脸识别[J].计算机工程,2010,36(21):175-177. 被引量:7
  • 6Qiao Lishan, Chen Songcan, Tan Xiaoyang. Sparsity Preserving Projections with Application to Face Recognition[J]. Pattern Recognition, 2010, 43(1): 331-341.

二级参考文献43

  • 1Wang Jie,Plataniotis K N,Lu Juwei,et al.On Solving the Face Recognition Problem with One Training Sample per Subject[J].Pattern Recognition.2006,39(9):1746-1762.
  • 2Tan Xiaoyang,Chen Songcan,Zhou Zhihua,et al.Face Recognition from a Single Image per Person: A Survey[J].Pattern Recognition.2006,39(9):1725-1745.
  • 3Wright J,Ma Yi,Mairal J,et al.Sparse Representation for Computer Vision and Pattern Recognition[J].Proceedings of the IEEE.2010,98(6):1031-1044.
  • 4Candès E J,Tao T.Reflections on Compressed Sensing[J].IEEE Information Theory Society Newslette,2008,58(4): 20-23.
  • 5Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory.2006,52(4):1289-1306.
  • 6Liu Jun,Chen Songcan,Zhou Zhihua,et al.Single Image Subspace for Face Recognition[C]//Proc.of the 3rd International Conference on Analysis and Modeling of Faces and Gestures.Rio de Janeiro,Brazil: Springer-Verlag,2007: 205-219.
  • 7Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2009,31(2):210-227.
  • 8Olivier C, Bernhard S, Alexander Z. Semi-Supervised Learning. Cambridge: MIT Press, 2006.
  • 9Zhong S. Semi-Supervised model-based document clustering: A comparative study. Machine Learning, 2006,65(1):3-29.
  • 10Bilenko M, Basu S, Mooney RJ. Integrating constraints and metric learning in semi-supervised clustering. In: Carla EB, ed. Proc. of the 21 st Int'l Conf. on Machine Learning (ICML 2004). Banff: ACM Press, 2004. 81-88.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部