摘要
将禁忌搜索和遗传算法相结合,提出一种改进的最小二乘支持向量机(LS-SVM)参数优选方法。利用自适应遗传算法进行全局搜索,使用禁忌搜索进行局部寻优,由此提高求解速度和解的精度。采用某冶炼厂净化工段的现场数据建立模型进行仿真实验,结果表明,该方法能使LS-SVM模型具有较好的泛化能力,模型精度满足工艺要求。
This paper proposes an improved Least Squares Support Vector Machine(LS-SVM) parameter optimized selection method by combining Tabu Search(TS) and Genetic Algorithm(GA). Self-adaptive GA is used to search the global space and TS is used for searching the local area, so that the efficiency and precision of the solution are improved. A prediction model based on the method is established and simulated by the field data from the purification process in a smelt factory. Simulation results show that the method makes LS-SVM model have good generalization performance and high precision which can satisfy the technology requirement.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第24期266-268,共3页
Computer Engineering
基金
国家杰出青年科学基金资助项目(61025015)
关键词
最小二乘支持向量机
参数优选
遗传算法
禁忌搜索
预测建模
Least Squares Support Vector Machine(LS-SVM)
parameter optimized selection
Genetic Algorithm(GA)
Tabu Search(TS)
prediction modeling