期刊文献+

应用Melnikov方法分析非线性电路中分岔与混沌的阈值

Analytically Determined the Threshold of Bifurcation and Chaos in a Nonlinear RLC System by Melnikov's method
原文传递
导出
摘要 应用Melnikov方法,对非线性电路微分系统进行解析分析,根据横截同宿点存在原理,求出Smale马蹄意义下的混沌的阈值;给出系统出现周期为mT的次谐波解的条件.所得结果同实验符合得很好. Appliying Melnikov's method we analytically analysise the nonlinear circuit differential system. Following the principle of the existence of the transverse homoclinic pointws. We get the theshold of chaos under the meaning provided by Smale horseshoe, and the condition under which the system arises solutions of subharmonic orbits whose periods are mT. The theoretical results are in good agreement with that from experiments.
出处 《云南大学学报(自然科学版)》 CAS CSCD 1990年第1期36-42,共7页 Journal of Yunnan University(Natural Sciences Edition)
关键词 非线性电路 混沌 阈值 melnikov法 non-linear circuit, threshold values, transverse Homoclinic paint, subharmonic orbits
  • 相关文献

参考文献2

  • 1和永寿,王运祥.耦合非线性系统特性研究[J]云南大学学报(自然科学版),1988(01).
  • 2王运祥,和永寿,彭守礼.频率扫描法研究倍周期分岔与混沌现象[J]物理学报,1984(05).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部