期刊文献+

基于混合模式推荐技术的研究

Research on the recommended technology based on the mixed model
下载PDF
导出
摘要 随着网络技术的发展,接入网络的服务器数量呈现出指数级增长的态势。在海量信息面前,人们对信息的利用率渐渐降低,盲目地在网络中搜寻需要的内容。用户急需一种能够帮助他们购物的辅助工具,该工具能够按照用户自身的兴趣爱好自动地进行推荐。通过改进一种混合模式的推荐技术解决该问题,实验部分也进行了相关验证。 With the development of the network technology, access network server presents increase exponentially the situation. The mass information in front of the people, the utilization rate of gradually to reduce, blindly in the network search need content. Users need a can help them shopping auxiliary tool, this tool can according to user's interests automatically to recommend. This article through the improvement of a hybrid model recommended technology solves this problem, the experiment and the correlation of validation.
作者 张怡 周渊
出处 《信息技术》 2011年第11期63-65,共3页 Information Technology
关键词 混合模式推荐 推荐系统 协同过滤 mixed mode recommend recommend system collaborative filtering
  • 相关文献

参考文献5

二级参考文献22

  • 1吴立德,大规模中文文本处理,1997年
  • 2Billsus D, Pazzani M J. Learning Collaborative Information Filters. In:Proc. of ICML'98. 1998.46-53
  • 3Breese J S,Heckerman D,Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, 1998.43-52
  • 4Goldberg D, Nichols D, Oki B M,Terry D. Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM. Dec. 1992
  • 5Herlocker J,Pei J,Yin Y. Mining Frequent Patterns Without Candidate Generation: [ Technical Report CMPT99-12]. School of Computing Science,Simon Fraser University, 1999
  • 6Herlocker J, Konstan J, Borchers A, Riedl J. An Algorithmic Framework for Performing Collaborative Filtering. In: Proc. of ACM SIGIR'99 ,ACM press, 1999
  • 7Peppers D,Rogers M. The One to One Future: Building Relationships One customer at a Time. Bantam Doubleday Dell Publishing,1997
  • 8Wolf J,Aggarwal C,Wu K-L,Yu P. Horting Hatches an Egg: ANew Graph-Theoretic Approach to Collaborative Filtering. In:Proc. of ACM SIGMOD Intl. Conf. on Knowledge Discovery &Data
  • 9Badrul S,Goerge K,Joseph K,John R. Analysis of Recommendation Algorithms for E-Commerce EC'00,Minneapolis Minnesota,2000
  • 10J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166

共引文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部