摘要
通过对航空发动机振动信号进行小波分解,依据多尺度空间局部能量分布和粗糙性提取基于子带信号能量加权广义粗糙度特征实现对振动情况的描述.然后将上述特征送入支持向量机(support vectormachine,简称SVM)分类器进行训练,根据分类器的输出结果判断航空发动机的工作状态和故障类型.通过对实测航空发动机试车时得到的振动信号的实验分析结果表明,该算法可以有效地识别发动机的振动故障.
The signal was decomposed based on wavelet transform and the generalized roughness vector of the signal was formed by making use of the local energy distributions and the roughness of the sub-band signal.Then the desired parameters serve as the fault characteristic vectors to be input to the support vector machine classifier and the work conditions and fault patterns were identified by the output of the classifier.The analysis results from the aeroengine vibration signals show that the fault diagnosis method can classify working conditions and fault patterns effectively.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2011年第11期2445-2449,共5页
Journal of Aerospace Power
基金
航空科学基金(20105644004)
关键词
航空发动机
振动分析
广义粗糙度
支持向量机(SVM)
小波
故障诊断
aeroengine
vibration analysis
generalized roughness vector
support vector machine(SVM)
wavelet
fault diagnosis