摘要
The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and big heat loads. The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange. Therefore, to solve these prob- lems, we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system. Through numerical cal- culations we will simulate temperature fields, pressure fields and velocity fields under different air sup- ply temperatures, as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to find the proper layout and number of radiators that meet well- head anti-frost requirements from our simulation results, in order to provide guidelines for a practical engineering design. Tests on the Zhangshuanglou auxiliary shaft wellhead shows good, look promising and appear to resolve successfully the problem of high energy consumption and high pollution of well- head heating by a coal-fired boiler.
The auxiliary shaft is an important location for coal mine heating in the winter,where the main purpose of heating is to prevent icing of the shaft.Wellhead heating requires characteristics of openness,no-noise and big heat loads.The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange.Therefore,to solve these problems,we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system.Through numerical calculations we will simulate temperature fields,pressure fields and velocity fields under different air supply temperatures,as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to and the proper layout and number of radiators that meet wellhead anti-frost requirements from our simulation results,in order to provide guidelines for a practical engineering design.Tests on the Zhangshuanglou auxiliary shaft wellhead shows good,look promising and appear to resolve successfully the problem of high energy consumption and high pollution of wellhead heating by a coal-fired boiler.
基金
the National Basic Research Program of China (No.2006CB202200)
the National Major Project of the Ministry of Education (No. 304005)
the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0656)