On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions
On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions
摘要
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(e,θ) - qθ+eln^α(1+e). For the heat flux q ~ -(1+θ^m) △θwe show the existence of a weak solution provided α〉max{1,1/m}, m 〉0. This improves the recent result from [1].
基金
Acknowledgments The work of M.P. is a part of the research project MSM 0021620839 financed by MSMT and partly supported by the grant of the Czech Science Foundation No. 201/08/0315 and by the project LC06052 (Jindfich Necas Center for Mathematical Modeling).
参考文献14
-
1Novotny A., Pokorny M., Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions. Appl. Math., 56(1) (2011), 137-160.
-
2Pecharova P., Pokorny M., Steady compressible Navier-Stokes-Fourier system in two space dimensions. Comment. Math. Univ. Carolin., 51(4) (2010), 653-679.
-
3Novotny A., Pokorny, M., Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations. J. Differential Equations 251(2) (2011), 270-315.
-
4Novotny A., Pokorny M., Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal., 43 (2011), 1158-1188.
-
5Mucha P. B., Pokorny, M., On the steady compressible Navier-Stokes-Fourier system. Comm. Math. Phys., 288 (2009), 349-377.
-
6Mucha P. B., Pokorny M., Weak solutions to equations of steady compressible heat conducting fluids. Math. Models Methods Appl. Sci., 20(5) (2010), 785-813.
-
7Frehse J., Steinhauer M., Weigant W., The Dirichlet problem for steady viscous compressible flow in 3-D. Journal de Mathdmatiques Pures et Appliquees, (2009), doi: 10.1016/j.matpur. 2009.06.005.
-
8Frehse J., Steinhauer M., Weigant Wo, The Dirichlet problem for viscous compressible isothermal Navier-Stokes equations in two-dimensions. Arch. Ration. Mech, Anal., 198(1) (2010), 1-12.
-
9Erban R., On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow. Math. Methods Appl. Sci., 26(6) (2003), 489-517.
-
10Kufner A., John O., Fucik S., Function Spaces. Academia, Praha, 1977.
-
1赖绍永.THE GLOBAL AND LOCAL C^(2)-SOLUTIONS FOR THE WAVE EQUATION □u = G(u_t, Du) IN THREE SPACE DIMENSIONS[J].Acta Mathematica Scientia,2000,20(4):495-503. 被引量:2
-
2Yao Duan-zheng,Song Ke-hui,Xiong Gui-guang.Solution of Cauchy's Problem for Wave Equations in Higher Space Dimensions by Means of D'Alembert's Formula[J].Wuhan University Journal of Natural Sciences,2000,5(2):169-174.
-
3HE Tao,LI Hui,DAI LongGui,WANG XiaoLi,CHEN Yao,MA ZiGuang,XU PeiQiang,JIANG Yang,WANG Lu,JIA HaiQiang,WANG WenXin,CHEN Hong.The influence of pressure on the growth of a-plane GaN on r-plane sapphire substrates by MOCVD[J].Science China(Physics,Mechanics & Astronomy),2011,54(3):446-449.
-
4郝子洋,杜凤沛.最大气泡压力法测表面张力实验数据处理的改进[J].大学化学,2008,23(6):34-36. 被引量:11
-
5Fayong Zhang,Bo Han.THE FINITE DIFFERENCE METHOD FOR DISSIPATIVE KLEIN-GORDON-SCHRDINGER EQUATIONS IN THREE SPACE DIMENSIONS[J].Journal of Computational Mathematics,2010,28(6):879-900. 被引量:2
-
6李吉晓,张冶文,吴长顺,彭宗仁.一种固体介质中空间电荷分布测量的新方法[J].同济大学学报(自然科学版),2000,28(5):568-571. 被引量:5
-
7ZHOU YI Institute of Mathematics, Fudan University, Shanghai 200433, China..ON THE EQUATION□Φ=|▽Φ|~2 IN FOUR SPACE DIMENSIONS[J].Chinese Annals of Mathematics,Series B,2003,24(3):293-302. 被引量:2
-
8陆云光,Christian KLINGENBERG,Ujjwal KOLEY,Xuezhou LU.DECAY RATE FOR DEGENERATE CONVECTION DIFFUSION EQUATIONS IN BOTH ONE AND SEVERAL SPACE DIMENSIONS[J].Acta Mathematica Scientia,2015,35(2):281-302. 被引量:2
-
9王武孝,袁森,张忠明.液体表面张力测定的探讨[J].物理测试,1998,16(1):38-40. 被引量:1
-
10Nerming MUJAKOVIC,Nelida CRNJARIC-ZIC.GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY[J].Acta Mathematica Scientia,2016,36(6):1541-1576. 被引量:1