期刊文献+

On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions

On the Steady Solutions to a Model of Compressible Heat Conducting Fluid in Two Space Dimensions
原文传递
导出
摘要 We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain with the pressure law p(e,θ) - qθ+eln^α(1+e). For the heat flux q ~ -(1+θ^m) △θwe show the existence of a weak solution provided α〉max{1,1/m}, m 〉0. This improves the recent result from [1].
作者 POKORNY Milan
出处 《Journal of Partial Differential Equations》 2011年第4期334-350,共17页 偏微分方程(英文版)
基金 Acknowledgments The work of M.P. is a part of the research project MSM 0021620839 financed by MSMT and partly supported by the grant of the Czech Science Foundation No. 201/08/0315 and by the project LC06052 (Jindfich Necas Center for Mathematical Modeling).
  • 相关文献

参考文献14

  • 1Novotny A., Pokorny M., Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions. Appl. Math., 56(1) (2011), 137-160.
  • 2Pecharova P., Pokorny M., Steady compressible Navier-Stokes-Fourier system in two space dimensions. Comment. Math. Univ. Carolin., 51(4) (2010), 653-679.
  • 3Novotny A., Pokorny, M., Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations. J. Differential Equations 251(2) (2011), 270-315.
  • 4Novotny A., Pokorny M., Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal., 43 (2011), 1158-1188.
  • 5Mucha P. B., Pokorny, M., On the steady compressible Navier-Stokes-Fourier system. Comm. Math. Phys., 288 (2009), 349-377.
  • 6Mucha P. B., Pokorny M., Weak solutions to equations of steady compressible heat conducting fluids. Math. Models Methods Appl. Sci., 20(5) (2010), 785-813.
  • 7Frehse J., Steinhauer M., Weigant W., The Dirichlet problem for steady viscous compressible flow in 3-D. Journal de Mathdmatiques Pures et Appliquees, (2009), doi: 10.1016/j.matpur. 2009.06.005.
  • 8Frehse J., Steinhauer M., Weigant Wo, The Dirichlet problem for viscous compressible isothermal Navier-Stokes equations in two-dimensions. Arch. Ration. Mech, Anal., 198(1) (2010), 1-12.
  • 9Erban R., On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow. Math. Methods Appl. Sci., 26(6) (2003), 489-517.
  • 10Kufner A., John O., Fucik S., Function Spaces. Academia, Praha, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部