期刊文献+

Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge 被引量:10

Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge
原文传递
导出
摘要 Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant. During the acclimation processes, aerobic granular sludge being able to effectively degrade aniline was successfully formed, from which a preponderant bacterial strain was isolated and named as AN1. Effects of factors including pH, temperature, and second carbon/nitrogen source on the biodegradation of aniline were investigated. Results showed that the optimal conditions for the biodegradation of aniline by the strain AN1 were at pH 7.0 and 28–35°C. At the optimal pH and temperature, the biodegradation rate of aniline could reach as high as 17.8 mg/(L·hr) when the initial aniline concentration was 400 mg/L. Further studies revealed that the addition of 1 g/L glucose or ammonium chloride as a second carbon or nitrogen source could slightly enhance the biodegradation efficiency from 93.0% to 95.1%–98.5%. However, even more addition of glucose or ammonium could not further enhance the biodegradation process but delayed the biodegradation of aniline by the strain AN1. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 26S rDNA sequences, the strain AN1 was identified as Candida tropicalis. Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant. During the acclimation processes, aerobic granular sludge being able to effectively degrade aniline was successfully formed, from which a preponderant bacterial strain was isolated and named as AN1. Effects of factors including pH, temperature, and second carbon/nitrogen source on the biodegradation of aniline were investigated. Results showed that the optimal conditions for the biodegradation of aniline by the strain AN1 were at pH 7.0 and 28–35°C. At the optimal pH and temperature, the biodegradation rate of aniline could reach as high as 17.8 mg/(L·hr) when the initial aniline concentration was 400 mg/L. Further studies revealed that the addition of 1 g/L glucose or ammonium chloride as a second carbon or nitrogen source could slightly enhance the biodegradation efficiency from 93.0% to 95.1%–98.5%. However, even more addition of glucose or ammonium could not further enhance the biodegradation process but delayed the biodegradation of aniline by the strain AN1. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 26S rDNA sequences, the strain AN1 was identified as Candida tropicalis.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第12期2063-2068,共6页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 20977048) the National High Technology and Development Program (863) of China (No. 2009AA06Z317) a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
关键词 ANILINE aerobic granular sludge BIODEGRADATION Candida tropicalis AN1 aniline aerobic granular sludge biodegradation Candida tropicalis AN1
  • 相关文献

参考文献6

二级参考文献88

共引文献115

同被引文献126

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部