期刊文献+

基于三阶Rényi熵的核参数优化

Optimization of Kernel Parameters Based on Third-Order Rényi Entropy
下载PDF
导出
摘要 在Cohen类时频分布中,为使减小交叉项与保持高的时频聚集性二者之间达到最佳折中,提出了一种基于三阶Rényi熵的核参数优化算法.根据三阶Rényi熵对交叉项的近似不变性,通过搜索三阶Rényi熵随核参数变化曲线下降由快变慢的转折点,可以获得最优核参数.理论分析和仿真结果表明:根据三阶Rényi熵对核参数进行优化,可以使核函数与信号达到最佳匹配,从而得到高性能的时频分布. In order to obtain an optimal tradeoff between cross-term reduction and high time-frequency concentration in time-frequency distribution of Cohen's class, an optimization algorithm of kernel parameters based on third-order Renyi entropy was proposed. From the asymptotic cross term invariance of third-order Renyi entropy, the optimal kernel parameters can be obtained by searching the transition of the curve of third-order Renyi entropy versus kernel parameters. The theoretical analysis and simulation results show that the optimization of kernel parameters based on third-order Renyi entropy can match the kernel function best with signals to yield a high-performance time- frequency distribution.
作者 冯涛 袁超伟
出处 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期899-903,共5页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(60672132 60872149)
关键词 Cohen类时频分布 Rényi熵 核函数 交叉项 时频聚集性 Cohen's class time-frequency distribution Renyi entropy kernel function cross term time-frequency concentration
  • 相关文献

参考文献15

  • 1钱淑华,王新晴,李焕良.二次型时频分布在机械故障诊断中的应用[J].西南交通大学学报,2003,38(5):578-580. 被引量:6
  • 2李家强,黄志强,金林.双向高斯核函数时频分布及在瞬时频率估计中的应用[J].中国电子科学研究院学报,2009,4(5):533-536. 被引量:2
  • 3刘开培,马秉伟,周莉,王波,郑卫东,史洪彬.基于改进的Cohen类时频分布的间谐波检测[J].高电压技术,2008,34(9):1949-1953. 被引量:3
  • 4SHAAMERI A Z windowed and Parameters definition for the smooth windowed Wigner-Ville distribution of time-varying signals [ C ]//Processings of the 6th International Symposium on Signal Processing and Its Applications. Kuala Lumpur: IEEE, 2001: 573 -576.
  • 5SUCIC V. A separable kernel filter design procedure for signal time-frequency analysis [ C ] // Processings of the 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. Graz: IEEE, 2008: 234-238.
  • 6FLANDRIN P, BARANIUK R G, MICHEL O. Time- frequency complexity and information[ C]// Processings of IEEE Int. Conf. Acoustics, Speech, and Signal Processing. Adelaide: IEEE, 1994, 6: 329-332.
  • 7BARANIUK R G, FLANDRIN P, JANSSEN A J E M, et al. Measuring time-frequency information content using the Ronyi entropies[J]. IEEE Transactions on Information Theory, 2001,47 (4) : 1391-1409.
  • 8STANKOVIC L. A measure of some time-frequency distributions concentration[ J ]. Signal Processing, 2001, 81(3) : 621-631.
  • 9SANG T, WILLIAMS W J. Ronyi information and signal-dependent optimal kernel design[ C]// Processings of IEEE Int. Conf. Acoustics, Speech and Signal Processing. Detroit: IEEE, 1995: 997-1000.
  • 10AVIYENTE S, WILLIAMS W J. Minimum entropy time-frequency distributions [ J ]. IEEE Siganl Processing Letters, 2005, 12( 1 ) : 37-40.

二级参考文献25

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部