期刊文献+

基于GF(p)椭圆曲线加密的点乘实现方案 被引量:1

The Implementation of Point Multiplication for ECC over GF(p)
下载PDF
导出
摘要 基于GF(p)上的椭圆曲线加密算法是公钥加密的一种。ECC算法中主要的运算是点乘运算,文章主要分析了点乘运算中使用的各种算法:NAF算法,坐标转换,Montgomery模乘。并在算法的基础上研究了倍点和点加运算中的数据相关性,提出了一种采用四个算术单元的并行结构,实现了算法和体系结构的最佳组合方案。 The ECC over GF(p) is one of the public-key cryptosystems. The point multiplication is the main operation in the ECC. This paper firstly presents several algorithms which are used in the operation of point multiplication such as: NAF algorithm, coordinate conversion, Montgomery multiplication. Then based on these algorithms and the detailed research on the data correlation, a parallel hardware architecture with four arithmetic units and its best combination with these algorithms are presented.
作者 龚亮
出处 《大众科技》 2011年第12期4-6,共3页 Popular Science & Technology
关键词 椭圆曲线 点乘 坐标转换 并行结构 最佳组合 ECC point multiplication coordinate conversion parallel hardware architecture best combination
  • 相关文献

参考文献8

  • 1Darrel Hankerson,Alffed Menezes,Scott Vanstone 原著. Guide to Elliptic Curve Cryptography(椭圆曲线加密算法导论)[M].张焕国,等译.北京:电子工业出版社,2005.
  • 2Gerardo Orlando and ChristofPaar,A scahblegf(p) elliptic curve processor architeaure for programmable ardware[R].ln CHES 2001,Spriger-Verlag Paris,2001.
  • 3S.B.Ors.L.Batina,B.Preneel,etal,Hardware implementation of an elliptic curve processor over GF(p)[R]. in Proc.14^th Systems.Architectures and Processors(ASAP' 03).2003.
  • 4Mcivor CJ.,Mdoone M.Mccanny J.V.,Hardware Elliptic Curve Cryptographic Processor Over GF(p)[J].IEEE Transactions on drcuit and systems,(53).
  • 5Jyu-Yuan Li and Chih-Tsun Huang. Elixir :High-throughput cost-effective dual-field processors and the design framework for elliptic curve cryptography[J]. IEEE Trans. Very large scale integr.(VLSl)Syst.2008,(16).
  • 6Lo'ai Ali Tawalben Abidalrahman Mohammad and Adrian Abdul-Aziz Gutub. Efficient FPGA implementation of a programmalbe architecture for GF(p) Elliptic Curve Crypto Computations[J].J Sign Proces syst.2010,(59).
  • 7P.L.Montgomery.Modular multiplication without rail division[J] .Math. Computation, 1985, (44).
  • 8C Kaya Koc and B.S.Kaliski Jr.Analyzing and Comparing Montgomery Multiplication Algo-rithms[J],IEEE Micro,1996, (16).

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部