期刊文献+

膀胱肿瘤离体组织的拉曼光谱学研究 被引量:4

Study on Bladder Cancer Tissues with Raman Spectroscopy
下载PDF
导出
摘要 使用激光共聚焦显微拉曼光谱仪测取膀胱肿瘤和正常膀胱组织的拉曼特征谱,应用主成分分析/支持向量机(principal component analysis,PCA/support vector machines,SVM)分类器对数据进行判别分析,最后使用弃一交叉验证法(leave-one-out cross validation,LOOCV)测试判别结果的准确度。结果发现膀胱肿瘤组织与正常膀胱组织的拉曼光谱存在明显差异,肿瘤组织在782和1 583cm-1等核酸特征谱带处峰高显著增强,而正常组织在1 061,1 295,2 849,2 881cm-1等蛋白质和脂质特征谱带处峰高显著增强。PCA/SVM可良好区分膀胱肿瘤组织和正常膀胱组织的拉曼光谱,LOOCV测试分类器显示肿瘤诊断的敏感度86.7%、特异度87.5%、阳性预测值92.9%、阴性预测值77.8%。由此得出结论:拉曼光谱可以良好诊断膀胱肿瘤的体外组织,展现了优越的临床应用前景。 The scope of this research lies in diagnosis of bladder cancer through Raman spectra.The spectra of bladder cancer and normal b ladder were measured by using laser confocal Raman micro-spectroscopy.Principa l component analysis/support vector machines was applied to the spectral datase t to construct diagnostic algorithms,then to detect the accuracy of these algori thms to determine histological diagnosis by leave-one-out cross validation fro m its Raman spectrum.It was showed that the peak intensity of nucleic acid(782,1 583 cm-1) in bladder cancer and protein(1 061,1 295,2 849,2 881 cm-1) in normal bladder increased significantly.Additionally,Principal com ponent analysis(PCA) and support vector machines(SVM) provided an effective to ol for differentiating the bladder cancer from normal bladder tissue.Excellent sensitivity(86.7%),specificity(87.5%),positive predictive value(92.9%), and negative predictive value(72.8%) for the diagnosis of bladder cancer were obtained by leave-one-out cross validation.It was concluded that Raman spectr oscopy can be used to accurately identify bladder cancer in vitro,and it sugges ts the promising potential application of PCA/SVM-based Raman spectroscopy for the diagnosis of bladder cancer.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第1期123-126,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(30701009) 国家重点基础研究发展计划项目(2009CB526408)资助
关键词 拉曼光谱 膀胱肿瘤 正常膀胱组织 主成分分析 支持向量机 Raman spectroscopy Bladder cancer Normal bladder Principal Component Analysi s Support vector machines
  • 相关文献

参考文献11

  • 1Babjuk M, Oosterlinck W, Sylvester R, et al. European Urology, 2008, 54(2): 303.
  • 2Haka A S, Volynskaya Z, Gardecki J A, et al. Cancer Research, 2006, 66(6): 3317.
  • 3Theodoridis S, Koutroumbas K. Pattern Recognition. 4th Ed. New York: Academic Press, 2009.
  • 4Vapnik V N. Statistical Learning Theory. New York: Wiley Interscience, 1998.
  • 5Shapiro A, Gofrit O N, Pizov G, et al. European Urology, 2011, 59(1): 106.
  • 6De Jong B W, Schut T C, Maquelin K,et al. Analytical Chemistry, 2006, 78(22): 7761.
  • 7Draga R O, Grimbergen M C, Vijverberg P L, et al. Analytical Chemistry, 2010, 82(14): 5993.
  • 8Crow P, Uff J S, Farmer J A, et al. British Journal of Urology International, 2004, 93(9): 1232.
  • 9Draux F, Gobinet C, Sulé-Suso J, et al. Analytical and Bioanalytical Chemistry, 2010, 397(7): 2727.
  • 10Anthony T Tu. Raman Spectroscopy in Biology: Principles and Applications. New York: Wiley Interscience, 1982. 187.

同被引文献18

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部