摘要
边数等于点数加二的连通图称为三圈图.设△(G)和μ(G)分别表示图G的最大度和其拉普拉斯谱半径,设T(n)表示所有n阶三圈图的集合,证明了对于T(n)的两个图H_1和H_2,若△(H_1)>△(H_2)且△(H_1)≥n+7/2,则μ(H_1)>μ(H_2).作为该结论的应用,确定了T(n)(n≥9)中图的第七大至第十九大的拉普拉斯谱半径及其相应的极图.
A tricyclic graph is a connected graph in which the number of edges equals the number of vertices plus two.Let△(G) andμ(G) denote the maximum degree and the Laplacian spectral radius of a graph G,respectively.Let T(n) be the set of tricyclic graphs on n vertices.In this paper, it is proved that,for two graphs H_1 and H_2 in T(n),if△(H_1)△(H_2) and△(H_1)≥(n+7)/2,thenμ(H_1)μ(H_2).As an application of this result,we determine the seventh to the nineteenth largest values of the Laplacian spectral radii among all the graphs in T(n)(n≥9) together with the corresponding graphs.
出处
《运筹学学报》
CSCD
2011年第4期1-8,共8页
Operations Research Transactions
基金
supported by Graduate Innovation Foundation of Shanghai University(SHUCX 112013)
the National Science Foundation of China(No.10926085)
Shanghai Leading Academic Discipline Project(No.S30104)
关键词
拉普拉斯谱半径
三圈图
最大度
Laplacian spectral radius
tricyclic graphs
maximum degree