期刊文献+

弱向量均衡问题的含参适定性(英文)

Parametric Well-posedness for Weak Vector Equilibrium Problems
下载PDF
导出
摘要 在实Banach空间中研究了弱向量均衡问题的两种适定性.给出了该问题唯一适定与适定的距离刻划.在适当条件下证明了弱向量均衡问题的唯一适定性等价于解的存在性与唯一性.最后,在有限维空间给出了弱向量均衡问题适定的充分性条件. The paper studied two kinds of parametric well-posedness for weak vector equilibrium problems in real Banach spaces.It established some metric characterizations of unique well-posedness and well-posedness for the problems.It proved that under suitable conditions,the unique well-posedness is equivalent to the existence and uniqueness of solutions.Finally,it gave sufficient conditions to well-posedness in finite dimensional space.
机构地区 南昌大学数学系
出处 《运筹学学报》 CSCD 2011年第4期9-22,共14页 Operations Research Transactions
基金 supported by Natural Science Foundation of China(11061023) Natural Science Foundation of Jiangxi Province(2008GZS0072) Program Sponsored for Innovation Research of College Graduate in Jiangxi Province(YC09B004)
关键词 弱向量均衡问题 含参适定性 距离刻划 weak vector equilibrium problems parametric well-posedness metric characterizations
  • 相关文献

参考文献1

二级参考文献15

  • 1Chen G Y, Huang X X, Yang X Q. Vecotr Optimization, Set-Valued and Variational Analysis. Berlin: Springer-Verlag, 2005.
  • 2Chiang Y, Chadli O, Yao J C. Generalized vector equilibrium problems with trifunctions. J Global Optim, 2004, 30:135-154.
  • 3Flores B F. Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM J Optim, 2000, 11:675-690.
  • 4Fang Y P, Hu R, Huang N J. Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints Programming. Comput Math Appl, 2008, 50:89-100.
  • 5Huang L C. The solution sets and connectedness for weak vector variational inequalities. Acta Mathematica Scientia, 2009, 29A(1): 114-120.
  • 6Huang X X, Teo K L, Yang X Q. Calmness and exact penalization in vector optimization with cone constraints. Comput Optim Appl, 2006, 35:47-67.
  • 7Huang X X, Yang X Q. Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J Optim, 2006, 17:243-258.
  • 8Huang X X, Yang X Q. Levitin-Polyak well-posedness of constrained vector optimization problems. J Glob Optim, 2007, 37:287-304.
  • 9Huang X X, Yang X Q. Levitin-Polyak well-posedness in generalized variational inequality problemes with functional constraints. J Ind Manag Optim, 2007, 3:671-684.
  • 10Kuratowski K. Topology Part Ⅰ and Part Ⅱ. New York: Academic Press, 1968.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部