期刊文献+

基于打洞函数法的BP神经网络水文预报方法 被引量:1

The BP Neural Network Hydrological Forecasting Algorithm Based on Tunneling Function Method
下载PDF
导出
摘要 BP神经网络是目前水文预报中应用较为广泛的方法,但存在收敛速度慢、易陷入局部最优的缺陷.由此提出了基于全局优化打洞函数法的水文预报方法,把打洞函数法和BP神经网络相结合,利用打洞函数使BP算法跳出当前局部极小点,得到一个函数值更小的极小点,循环运算直至找到全局极小点.实验表明该水文预报方法能够提高预报精度,显示了良好的适用性. BP neural network is widely used in hydrological forecasting.Aiming at the handicaps in present methods such as slow convergence and easily getting into local optimization, this paper presents a novel hydrological forecasting method based on the tunneling function which is one of the effective deterministic methods.The tunneling function method can find a lower minimizer by leaving the minimizer previously found.By repeating these processes,a global minimizer can be obtained at last.Experiments show the proposed method not only can obtain high accuracy in flood forecasting,but also has longer effective real-time.The hydrological forecasting method can be used in operational hydrological forecasting.
出处 《运筹学学报》 CSCD 2011年第4期45-54,共10页 Operations Research Transactions
基金 国家自然科学基金(11001248)
关键词 非线性规划 水文预报 打洞函数 BP神经网络 nonlinear programming hydrological forecasting tunneling function BP neural network
  • 相关文献

参考文献5

二级参考文献43

  • 1梁忠民,戴昌军.水文频率分析中的多项式正态变换方法研究[J].河海大学学报(自然科学版),2004,32(4):363-366. 被引量:17
  • 2胡铁松,袁鹏,丁晶.人工神经网络在水文水资源中的应用[J].水科学进展,1995,6(1):76-82. 被引量:97
  • 3水利部水利信息中心.水文情报预报规范SL250-2000[S].北京:中国水利水电出版社,2000.26.
  • 4McDonnell JJ. Where does water "go when it rains? Moving beyond the variable source area concept of rainfall-runoff response [ J]. Hydrological Processes, 2003, 17(9) , 1869 -1875.
  • 5Amorocho J. The Nonlinear prediction problem in the study of the runoff cycle[ J]. Water Resource Research, 1967, 3 (3), 861- 880.
  • 6J Y Ding. Variable unit hydrograph[ J]. Journal of Hydrology, 1974, 22( 1), 53 -69.
  • 7Duan Q, S Sorooshian, V Gupta. Effective and efficient global optimization for conceptual rainfall-runoff models [ J ]. Resource Research,1992, 28(4) , 1015 - 1031.
  • 8Govindaraju RS. Artificial neural networks in hydrology. I: preliminary concepts [ J]. Journal of Hydrologic Engineering, 2000, 5 (2), 115-123.
  • 9Lee KT, Hung WC, Meng CC. Deterministic Insight into ANN Model Performance for Storm Runoff Simulation [J]. Water Resources Management, 2007, 22 ( 1 ) , 67-82.
  • 10Han D, Kwong T, Li S. Uncertainties in real-time flood forecasting with neural networks[ J]. Hydrological Processes, 2007, 21 (2), 223-228.

共引文献90

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部