期刊文献+

基于无网格法的一维薛定谔方程的特解新算法

A Numerical Method for one-dimensional Dinger Equation using MPS Based on Meshless Method
下载PDF
导出
摘要 基于径向基函数和有限差分方法,利用无网格方法的特解新算法给出了一维薛定谔方程的数值解,同时给出了数值例子来说明这种方法良好的准确性,并取得了比较好的数值结果。 Based on the finite difference scheme and RBFs,the method of particular solution is proposed to solve one dimension dinger equation.And numerical example with good accuracy is given to validate the proposed method.
作者 李涛 姜同松
出处 《临沂师范学院学报》 2011年第6期69-73,共5页 Journal of Linyi Teachers' College
基金 国家自然科学基金(10671086) 山东省自然科学基金(ZR2010AM014)
关键词 薛定谔方程 有限差分 径向基函数 特解方法 数值解 dinger equation Finite difference RBFs Particular solution Numerical solution
  • 相关文献

参考文献15

  • 1M.A.Golberg A.S.Muleshkov and C.S.Chen.Particular solutions of helmholtz-type operators using higher order polyharmonic splines.Comput.Mechanics,24:411-419,1999.
  • 2X.Antoine and C.Besse. Unconditionally stablediscretization schemes of non-reecting boundary conditions for the one-dimensional dinger equation.J.Comput.Phys., 188: 157-75,2003.
  • 3K.E.Atkinson.The mumerical eva- luation of articular solution for poi- sson equation.lMA J.Numer.Anal.,5.
  • 4M.D.Buhmann.Radial Basis Functions. Cambridge University Press, Cambridge, 2003.
  • 5C.S.Chen, C.M Fan,and P.H.Wen.The method of particular solutions for solving elliptic problems with variable coeffcients.to appear in Communica- tion in Numerical Methods in Engineering.
  • 6W.Chen.Symmetric boundary knot method.Engineering Analysis with Boundary Elements,26:489-494,2002.
  • 7A.H.D.Cheng.Particular solutions of laplacian,helmholtz-type,and polyharmonic operators involving higher order radial basis functions.Eng.Analy.Boundary Elements,24:531-538,2000.
  • 8G.Fairweather and A.Karageorghis.The method of fundamental solution for elliptic boundary value problems.Advan.Comput. Math.,9:69-95,1998.
  • 9A.S.Muleshkov H.A.Cho,M.A.Golberg and X.Li.Treft'tz methods for time dependent partial differential equations.Computer, Materials and Continua, 1:1-38,2004.
  • 10H.Han,J.Jin,and X.Wu.A finite difference method for the one-dimentional time-dependent dinger equation on unbounded domain.Comput.Math.Appl.,50:1345-362,2005.

二级参考文献11

  • 1Mehdi Dehghan, Ali Shori. A numerical method for two-dimensional Schr6dinger equation using collocation and radial basis functions [J]. Computer and Mathematics with Applications, 2007, 54:136-146.
  • 2Triggiani R, Yao P-F. Inverse estimates for Schrodinger equations with variable coefficients Control Cybern [J]. Computer and Mathematics with Applications, 1999, 28: 627-664.
  • 3Shen Quan. A meshless method of lines for the numerical solution of KdV equation using radial basis functions [J]. Engineering Analysis with Boundary Elements, 2009, 33:1171-1180.
  • 4Buhmann M D. Radial Basis Functions [M]. Cambridge: Cambridge University Press, 2003.
  • 5Chen C S, Y F Rashed. Evaluation of thin plate spline based particular solutions for helmholtz-type operators for the drm [J]. Mechanics Research Communications, 1998, 25: 195-201.
  • 6Kansa E J. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-I [J]. Comput Math Appl, 1990, 19: 127-145.
  • 7Kansa E J. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II [J]. Comput Math Appl, 1990, 19: 147-161.
  • 8Dehghan M, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices [J]. Math Comput Simulation, 2006, 71: 16-30.
  • 9Chen C S, Fan C M, Wen P H. The method of fundamental solutions for solving elliptic pdes with variable coefficients [M].// Chen C S, Karageorghis A, Smyrlis Y S. The Method of Fundamental Solutions-A Meshless Method. Atlanta: Dynamic System Inc, 2008.
  • 10Chen C S, Golberg M A, Ganesh M. Multilevel compact radial functions based computational schemes for some elliptic problems [J]. Computers and Mathematics with Application, 2002, 43: 359-378.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部