期刊文献+

A SIMPLE PROOF OF THE CHAOTICITY OF SHIFT MAP UNDER A NEW DEFINITION OF CHAOS

A SIMPLE PROOF OF THE CHAOTICITY OF SHIFT MAP UNDER A NEW DEFINITION OF CHAOS
下载PDF
导出
摘要 Recently, Du has given a new strong definition of chaos by using the shift map. In this paper, we give a proof of the main theorem by constructing a dense uncountable invariant subset of the symbol space E2 containing transitive points in a simpler way with the help of a different metric. We also provide two examples, which support this new definition. Recently, Du has given a new strong definition of chaos by using the shift map. In this paper, we give a proof of the main theorem by constructing a dense uncountable invariant subset of the symbol space E2 containing transitive points in a simpler way with the help of a different metric. We also provide two examples, which support this new definition.
出处 《Analysis in Theory and Applications》 2011年第4期332-339,共8页 分析理论与应用(英文刊)
基金 CSIR (project no. F.NO. 8/3 (45)/2005-EMR-I) for their financial support
关键词 symbol space shift map δ-scrambled set CHAOS transitive points symbol space, shift map, δ-scrambled set, chaos, transitive points
  • 相关文献

参考文献11

  • 1Akin, E. and Kolyada, S., Li-Yorke Sensitivity, Nonlinearity, 16(2003), 1421-1433.
  • 2Aulbach, B. and Kieninger, B., An Elementary Proof for Hyperbolicity and Chaos of the Logistic Map, J. Diff Equn. Appl., 10(2004), 1243-1250.
  • 3Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, E, On Devaney's Definition of Chaos, Amer. Math. Mon., 99:4(1992), 332-334.
  • 4Bhaumik, I. and Choudhury, B. S., The Shift Map and the Symbolic Dynamics and Application of Topological Conjugacy, J. Phy. Sc., 13(2009), 149-160.
  • 5Bhaumik, I. and Choudhury, B. S., Dynamics of the Generalized Shift map, Bull. Cal. Math. Soc., 101:5(2009), 463-470.
  • 6Devaney, R. L., An Introduction to Chaotic Dynamical Systems, 2nd Edition, Addison-Wesley, Redwood City, CA, 1989.
  • 7Du, B. S., On the Nature of Chaos, arXiv:math.DS 0602585, February 2006.
  • 8Li, T. Y. and Yorke, J. A., Period Three Implies Chaos, Amer. Math. Mon., 82(1975), 985-992.
  • 9Parry, W., Symbolic Dynamics and Transformation of the Unit Interval, Tran. Amer. Math. Soc., 122:2(1966), 368-378.
  • 10Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics and Chaos, 2nd edition, CRC Press, Boca Raton, FL., 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部