摘要
Hilbert空间算子T∈B(H)称为是一致可逆的,若对任意的S∈B(H),TS与ST的可逆性相同.本文中根据一致可逆性质定义了一个新的谱集,用该谱集来研究广义(ω)性质的稳定性,即考虑了Hilbert空间上有界线性算子的有限秩摄动、幂零摄动以及Riesz摄动的广义(ω)性质.之后研究了能分解成有限个正规算子乘积的一类算子的广义(ω)性质的稳定性.
A Hilbert space operator T∈B(H) may be said to be "consistent in invertibility" provided that for each S∈B(H),TS and ST are either both or neither invertible.The induced spectrum contributes the stability of generalized property(ω), for a bounded operator T acting on a Hilbert space,under perturbations by finite rank operators,by nilpotent operators and quisi-nilpotent operators commuting with T.The stability of generalized property(ω) of the operators which are the products of finitely normal operators are considered.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第1期91-100,共10页
Acta Mathematica Sinica:Chinese Series
基金
陕西师范大学中央高校基本科研业务费专项资金资助(GK200901015)
关键词
广义(ω)性质
摄动
一致可逆性质
generalized property(w)
perturbation
consistent in invertibility