期刊文献+

一致可逆性质及广义(ω)性质的摄动

Consistent Invertibility and Perturbations of the Generalized Property(ω)
原文传递
导出
摘要 Hilbert空间算子T∈B(H)称为是一致可逆的,若对任意的S∈B(H),TS与ST的可逆性相同.本文中根据一致可逆性质定义了一个新的谱集,用该谱集来研究广义(ω)性质的稳定性,即考虑了Hilbert空间上有界线性算子的有限秩摄动、幂零摄动以及Riesz摄动的广义(ω)性质.之后研究了能分解成有限个正规算子乘积的一类算子的广义(ω)性质的稳定性. A Hilbert space operator T∈B(H) may be said to be "consistent in invertibility" provided that for each S∈B(H),TS and ST are either both or neither invertible.The induced spectrum contributes the stability of generalized property(ω), for a bounded operator T acting on a Hilbert space,under perturbations by finite rank operators,by nilpotent operators and quisi-nilpotent operators commuting with T.The stability of generalized property(ω) of the operators which are the products of finitely normal operators are considered.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第1期91-100,共10页 Acta Mathematica Sinica:Chinese Series
基金 陕西师范大学中央高校基本科研业务费专项资金资助(GK200901015)
关键词 广义(ω)性质 摄动 一致可逆性质 generalized property(w) perturbation consistent in invertibility
  • 相关文献

参考文献14

  • 1Weyl H., Uber beschrgnkte quadratischc Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palerrno, 1909, 27:373 392.
  • 2Harte R. E., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349:2115 2124.
  • 3Djordjevic D. S., Operators obeying a-Weyl's theorem, Publ. Math., Debrecen, 1999, 55: 283-298.
  • 4Aiena P., Pena P., A variantion on Weyl's theorem, J. Math. Anal. Appl., 2006, 3:14:566 579.
  • 5Gong W. B., Han D. G., Spectrum of the products of operators and compact perturbations, Proc. Amer Math. Soc., 1994, 120(3): 755 760.
  • 6Rakocevic V., Semi-Browder operators and perturbations, Studia Math., 1997, 122:131 137.
  • 7Cao X. H. , Zhang H. J., Zhang Y. H., Consistent invertibility and Weyl' s theorem, J. Math. Anal. Appl., 2010, 369:25 264.
  • 8Aiena P., Fredholm Theory and Local Spectral Theory, with Applications to Multiplier, Dordrecht, Boston, London: Kluwer Academic Publishers, 2004.
  • 9Mbekhta M., Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux, Glasgow Math. J., 1987, 29: 159-175.
  • 10Mbekhta M., Ouahab, Operateurs s-regulier dans un espace de Banach et theorie spectralc, Acta Sci. Math. (Szezed). 1994. 59:525 543.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部