期刊文献+

半平面解析的无穷级Laplace-Stieltjes变换 被引量:17

Laplace-Stieltjes Transforms of Infinite Order in the Right Half-Plane
原文传递
导出
摘要 应用一个无穷级的型函数,研究右半平面解析的Laplace-Stieltjes变换的增长性和值分布,推广了Dirichlet级数的相关结论. By using a Type-function of the infinite order,the growth and the distribution of values of the Laplace-Stieltjes transforms convergent in the right half-plane are investigated.Some results similar to the Dirichlet series are obtained.
作者 孔荫莹
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第1期141-148,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11101096) 广东高校优秀青年创新人才培养计划项目(LYM08060) 广州市科技和信息化局应用基础研究计划项目(2010Y1-C641)
关键词 DIRICHLET级数 LAPLACE-STIELTJES变换 无穷级型函数 Dirichlet series Laplace-Stieltjes transforms type-function of infinite order
  • 相关文献

二级参考文献11

  • 1Yu Jiarong, Dirichlet Series and Random Dirichlet Series, China, Science Press, 1997.
  • 2Yu Jiarong and Sun Daochun, On the distribution of values of random Dirichlet series(I), Lectures on Comp. Anal., Singapore, World Scientific, 1988.
  • 3Chen Tewei, Sun Daochun, On the growth of infinite order Dirichlet series, China, Acta Mathematica Scientia, 2003, 23B(2): 247-251.
  • 4Yu Jiarong, Sur les droites de Borel de certaines fonction entieres, Annales Ecole Norm. Sup., 1951, 68(3): 65-104.
  • 5Knopp, K., Uber die Konvergenzabszisse des Laplace-Integrals, Math. Zeits., 1951, 54: 291-296.
  • 6Yu Jiarong, Borel's line of entire functions represented by Laplace-Stieltjes transformation(in Chinese), Acta Math. Sinica, 1963, 13: 471-484.
  • 7Batty, C.J.K., Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc., 1990, 322(2): 783-804.
  • 8Mishkelyavichyus, A. A Tauberian theorem for the Laplace-Stieltjes integral and the Dirichlet series(Russian), Litovsk. Mast. Sb., 1989, 29(4): 745-753.
  • 9Yu Jiarong, Some properties of random Dirichlet series(in Chinese), Acta Math. Sinica, 1978, 21: 97-118.
  • 10Widder, D.V., The Laplace Transform, Princeton Univ. Press, 1946.

共引文献24

同被引文献67

引证文献17

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部