摘要
研究下列半正Right F0cal边值问题单调正解的存在性其中λ>0是一个参数,n≥3,1<k≤n-1固定,非线性项f允许下方无界.在没有任何单调性假设的情况下,利用锥中的不动点定理得到了一个和两个单调正解的存在性结果.
We study the existence of monotone positive solutions for the semipositone right focal boundary value problems {(-1)^(n-k)u^(n)(t)=λf(t,u(t),u′,…u(k-1)(t)),t∈(0,1) u^(i)(0)=0,0≤i≤k-1,u(j)(1)=0,k≤j≤n-1 whereλ 〉0 is a parameter,n≥3,1 k≤n-1 is fixed,f may change sign for 0 〈t 〈1 and we allow f is both semipositone and lower unbounded.Without making any monotone type assumption,the existence results of at least one and two monotone positive solutions are obtained by means of the fixed point theorems in cones.
作者
郝新安
刘立山
吴永洪
Xin An HAO;Li Shan LIU;Yong Hong WU(School of Mathematical Sciences,Qufu Normal University,Qufu 273165,P.R.China;Department of Mathematics and Statistics,Curtin University of Technology Perth WA 6845,Australia)
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第1期149-160,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11071141)
山东省自然科学基金资助项目(Y2008A24,ZR2011AQ008)
山东省高等学校科技计划项目(J11LA06)
曲阜师范大学校青年基金资助项目(XJ201017)
关键词
单调正解
半正
RIGHT
Focal边值问题
monotone positive solution
semipositone
right focal boundary value problem