期刊文献+

带导数项的半正Right Focal边值问题单调正解的存在性

Existence of Monotone Positive Solutions for Semipositone Right Focal Boundary Value Problems with Dependence on the Derivatives
原文传递
导出
摘要 研究下列半正Right F0cal边值问题单调正解的存在性其中λ>0是一个参数,n≥3,1<k≤n-1固定,非线性项f允许下方无界.在没有任何单调性假设的情况下,利用锥中的不动点定理得到了一个和两个单调正解的存在性结果. We study the existence of monotone positive solutions for the semipositone right focal boundary value problems {(-1)^(n-k)u^(n)(t)=λf(t,u(t),u′,…u(k-1)(t)),t∈(0,1) u^(i)(0)=0,0≤i≤k-1,u(j)(1)=0,k≤j≤n-1 whereλ 〉0 is a parameter,n≥3,1 k≤n-1 is fixed,f may change sign for 0 〈t 〈1 and we allow f is both semipositone and lower unbounded.Without making any monotone type assumption,the existence results of at least one and two monotone positive solutions are obtained by means of the fixed point theorems in cones.
作者 郝新安 刘立山 吴永洪 Xin An HAO;Li Shan LIU;Yong Hong WU(School of Mathematical Sciences,Qufu Normal University,Qufu 273165,P.R.China;Department of Mathematics and Statistics,Curtin University of Technology Perth WA 6845,Australia)
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第1期149-160,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11071141) 山东省自然科学基金资助项目(Y2008A24,ZR2011AQ008) 山东省高等学校科技计划项目(J11LA06) 曲阜师范大学校青年基金资助项目(XJ201017)
关键词 单调正解 半正 RIGHT Focal边值问题 monotone positive solution semipositone right focal boundary value problem
  • 相关文献

参考文献16

  • 1Aronson D., Crandall M. C., Peletier L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal., 1982, 6(10): 1001-1022.
  • 2Parter S. V., Solutions of differential equations arising in chemical reactor processes, SIAM Y. Appl. Math., 1974, 26(4): 687-714.
  • 3Dancer E. N., On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations, 1980, 37(3): 404-437.
  • 4Wong P. J. Y., Agarwal R. P., Multiple positive solutions of two-point right focal boundary value problems, Math. Comput. Modelling, 1998, 28(1): 41 49.
  • 5He X. M., Ge W. G. Positive solutions for semipositone (p, n-p) right focal boundary value problems~ Appl. Anal., 2002, 81(2): 227 240.
  • 6Wong P. J. Y., Agarwal R. P., On two=point right focal eigenvalue problems, Z. Anal. Anwend., 1998, 17(3): 691 713.
  • 7Agarwal R. P., O'Regan D., Lakshmikantham V., Singular (p, n - p) focal and (n, p) higher order boundary value problems, Nonlinear Anal., 2000, 42(2): 215-228.
  • 8Ma R. Y., Multiple positive solutions for a semipositone fourth-order boundary value problem, Hiroshima Math. J., 2003, 33(2): 217-227.
  • 9Agarwal R. P., O'Regan D., Twin solutions to singular boundary value problems, Proc. Amer. Math. Soc., 2000, 128(7): 2085-2094.
  • 10Liu Z. Q., Debnath L., Kang S. M., Existence of monotone positive solutions to a third order two-point generalized right focal boundary value problem, Comput. Math. Appl., 2008, 55(3): 356-367.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部