期刊文献+

图像语义提取方法研究 被引量:6

Research on Image Semantic Extraction
下载PDF
导出
摘要 为解决从图像的低层视觉特征到高层语义特征的"语义鸿沟"问题,对当前的语义提取方法进行研究,简单介绍了图像语义层次模型,并根据语义信息的来源不同,归纳总结了图像语义中基于处理范围的方法,基于机器学习的方法,基于人机交互的方法和基于外部信息源的提取方法,这些工作为图像语义提取和图像语义检索等研究提供有益参考。 The current image semantic extraction method is researched to find a solution to eliminate the "semantic gap" between low-level visual features and high-level semantic features of images.The image semantic level model is simply introduced.According to the semantic information extracted from different sources,the information extraction methods based on processing region,machine learning,man-machine alternation and external information source are summed up.The above work provides a valuable reference for image semantic extraction and retrieval.
出处 《现代电子技术》 2011年第24期103-106,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60872142)
关键词 语义提取 局部算子 支持向量机 语义标注 semantic extraction local operator SVM semantic annotation
  • 相关文献

参考文献11

  • 1EAKINS J P. Automatic image content retrieval: are we getting anywhere [C]// Proc. of 3rd Int. Conf. on Electronic Library and Visual Information Research. Milton: [s. n.], 1996: 123-135.
  • 2HARRIS C, STEPHENS M. A combined corner and edge detection [C]// Proc. of 4th Alvey Vision Conf. Alvey: AVC, 1988:189-192.
  • 3G. LOWED. Distinctive image features from scale-invariant keypoint [J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 4OJALA T, PIETIKINEN M. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7): 971-987.
  • 5BAY H, TUYTELAARS T, COOL L. SURF: speeded up robust features [C]//Proceedings of the 9th European Conference Computer Vision. [S. l.]: UCCV, 2006: 404-417.
  • 6LIN Chun-yi, YIN Jun-xun, GAO Xue, et al. A semantic modeling approach for medical image semantic retrieval using hybrid bayesian networks [C]// Proceedings of IEEE Sixth International Conference on Intelligent Systems Design and Applications. Jinan, China: IEEE, 2006: 482-487.
  • 7伍小芹,温小斌,康耀红,张宏科.基于神经网络生成图像语义的算法研究[J].计算机工程与应用,2007,43(31):61-63. 被引量:2
  • 8GAO Ke, LIN Shou-xun, ZHANG Yong-dong. Clustering guided SVM for semantic image retrieval [C]//. Proceed- ings of 2007 2nd International Conference on Pervasive Computing and Applications. Birmingham: ICPCA, 2007: 199-203.
  • 9SHI Lei, GU Guo-chang, LIU Hai-bo, et al. A semantic annotation algorithm based on image regional object ontology [J]. IEEE Computer Science and Software Engineering, 2008,4 : 540-543.
  • 10LIU Zheng, MA Jun. Refining image annotation based on object-based semantic concept capturing and WordNet ontology [C]// Proceedings of IEEE Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) [S. l. ]: IEEE, 2008 (4): 96-100.

二级参考文献19

  • 1王崇骏,杨育彬,陈世福.基于高层语义的图像检索算法[J].软件学报,2004,15(10):1461-1469. 被引量:20
  • 2沈玉利,郭雷,耿苑.一种新型图像检索语义网络构建方法[J].计算机应用研究,2005,22(10):148-150. 被引量:7
  • 3盂祥增,张华,玉翔英,钟义信.WWW中图像的语义信息提取.中国人工智能进展:2003.北京:邮电出版社,2003
  • 4AI-Khatib W. Semantic Modeling and Knowledge Representation in Multimedia Database[J]. IEEE Trans, On Knowledge and Data Engineering, 1999,11 (1) : 64-80
  • 5Shen H T,Ooi B C,Tan K L. Giving Meanings to WWW Images.In ACM MM,2000. 39-47
  • 6Ooi B C,Shen H T,Tan K L. ICICLE: A Semantic-based Retrieval System for WWW Images
  • 7Haykin S.Neural networks:a comprehensive foundation[M].2nd ed. [S.l.] : Prentice-Hall, Inc, 1999.
  • 8Park J,Sandberg I W.Universal approximation using radial basis function network[J].Neural Compute, 1991,3:246-257.
  • 9Wang J Z,Li J,Wiederhold G.Corel 1M database used in SIMPLI- city[EB/OL].http ://wang.ist.psu.edu/docs/related/.
  • 10Kushki A,Androutsos P,Plataniotis K N,et al.Fuzzy aggregation of image features in content-based image retrieval[EB/OL].http:// citeseer.ist.psu.edu/569085.html.

共引文献1

同被引文献46

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 2赵敏,陈恩红,宋睿.基于集成学习的Adaboost演化决策树算法[J].计算机应用与软件,2007,24(3):1-2. 被引量:4
  • 3王成儒,罗晓燕.尺度及旋转不变纹理图像检索[J].电子测量技术,2007,30(5):29-31. 被引量:2
  • 4CARNEIRO G’CHAN A B,MORENO P,et al. Supervised learning of semantic classes for image annotation and retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,29(3):394-410.
  • 5APOSTOL N. ALEXANDER H’JELENA T,et al.Semantic concept-based query expansion and reranking for multimedia retrieval [ C ]? ACM Multimedia 2007 , Augsburg,Germany: 991-1000.
  • 6ZHENG Y T,ZHAO M,NEO S Y,et al. Visual synset: towards a higherlevel visual representation [C]. 26th IEEE Conference on Computer Vision and Pattern Recognition, Achorage,Alaska, USA,2008 : 1-8.
  • 7LI J G,WU W X, WANG T, et al. One step beyond histograms : image representation using markov stationary features[C]. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Achorage, Alaska, USA, 2008,1-8.
  • 8CHENG C C,LIN C J. IBSVM;A library for support vector machines [ EB/OL ]. Software available at http://www. csie. ntu. edu. tw/-cjlin/libsvm,2011.
  • 9Carneiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3) : 394 -410.
  • 10Feng Songhe, Xu De. Transductive multi-instance multi-label learning algorithm with application to automatic image annotation [J]. Expert Systems with Applications, 2010, 37 (1): 661 - 670.

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部