期刊文献+

非线性分数阶微分方程非奇异边值问题的多重正解

Multiple Positive Solutions for The Nonsingular Boundary Value Problem of A Nonlinear Fractional Differential Equation
原文传递
导出
摘要 通过研究非线性分数阶微分方程边值问题D0+^α+u(t)+f(t,u(t))=0,0〈t〈1 u(0):u(1)=u’(0)=0的Green函数及其性质,其中2〈α≤3是实数,D缸是标准Riemann—Liouville型微分,利用锥不动点定理证明了非奇异边值问题多重正解的存在性,并举例加以说明. In this paper, we consider Green's function and its properties for the nonlinear fractional differential equation boupdary value problemD0+^α+u(t)+f(t,u(t))=0,0〈t〈1 u(0):u(1)=u'(0)=0where 2 〈 a≤ is a real number, and Dα+ is the standard Riemann-Liouville differentiation. As an application of Green's function and its properties, we give some multiple positive solutions for the nonsingular boundary value problem.One concrete example is respectively given to explain the above theorem finally.
作者 于瑶 许晓婕
出处 《数学的实践与认识》 CSCD 北大核心 2011年第24期163-171,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(10971021)
关键词 分数阶微分方程 非奇异边值问题 正解 分数阶格林函数 不动点定理 fractional differential equation nonsingular boundary-value problem positivesolution fractional Green's function fixed-point theorem
  • 相关文献

参考文献11

  • 1Podlubny I. Fractional differential equations[J]. Mathematics in Science and Engineering, Academic Press, New Tork/Londin/Toronto, 1999, 198.
  • 2Samko S G, Kilbas A A, Marichev O I. Fractional integrals and derivatives (theorey and applications)[J]. Gordon and Breach Science Publishers, Switzerland, 1993.
  • 3Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations[J]. New York:John Wiley, 1993.
  • 4Kilbas A A, Trujillo J J. Differential equations of fractional order: methods, results and problems II[J]. Appl. Anal. 2002, 81:435-493.
  • 5El-Sayed A M A. Nonlinear functional differential equations of arbitrary orders[J]. Nonlinear Anal, 1998, 33:181-186.
  • 6Kilbas A A, Trujillo J J. Differential equations of fractional order: methods, results and problems I[J]. Appl. Anal. 2001, 78: 153-192.
  • 7Bai Zhanbing, Lii Halshen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J. Math. Anal. Appl. 2005, 311: 495-505.
  • 8E1-Shahed Moustafa. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Abstract and Applied Analysis, Article ID 10368, 2007.
  • 9Agarwal R P, Benchohra M, Slimani B A. Existence results for differential equations with fractional order and impulses[J]. Mem. Differential Equations Math. Phys, 2008, 44:1-21.
  • 10O'Regan D, Meehan M. Existence theory for nonlinear integral and integro-differential equations[J]. Kluwer Academic, Dordrecht, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部