摘要
通过研究非线性分数阶微分方程边值问题D0+^α+u(t)+f(t,u(t))=0,0〈t〈1 u(0):u(1)=u’(0)=0的Green函数及其性质,其中2〈α≤3是实数,D缸是标准Riemann—Liouville型微分,利用锥不动点定理证明了非奇异边值问题多重正解的存在性,并举例加以说明.
In this paper, we consider Green's function and its properties for the nonlinear fractional differential equation boupdary value problemD0+^α+u(t)+f(t,u(t))=0,0〈t〈1 u(0):u(1)=u'(0)=0where 2 〈 a≤ is a real number, and Dα+ is the standard Riemann-Liouville differentiation. As an application of Green's function and its properties, we give some multiple positive solutions for the nonsingular boundary value problem.One concrete example is respectively given to explain the above theorem finally.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第24期163-171,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(10971021)
关键词
分数阶微分方程
非奇异边值问题
正解
分数阶格林函数
不动点定理
fractional differential equation
nonsingular boundary-value problem
positivesolution
fractional Green's function
fixed-point theorem