期刊文献+

赋准范空间之间线性算子的五种有界性与连续性

The Five Boundedness and Continuity of Linear Operators between F*-Spaces
原文传递
导出
摘要 综合散见于多种文献的不同描述,明确线性算子拓扑有界、邻域有界、范有界与强有界的定义,引进次强有界的概念,给出赋准范空间之间与赋β-范空间之间线性算子的各种有界性以及连续性之间的关系定理与反例. For linear operator, summing up the different descriptions scattered throughout a wide variety of literatures, this paper makes clear the definitions of topological boundedness, neighborhood boundedness, norm boundedness, strong boundedness, introduces the concept of sub-strong boundedness, and for linear operator between F*-spaces and between β-normed spaces, gives the relationship theorems between various boundedness and continuity and some counter examples.
作者 王见勇
出处 《数学的实践与认识》 CSCD 北大核心 2011年第24期172-177,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10871141)
关键词 赋准范空间 赋Β-范空间 有界性 F*-space β-normed space boundedness
  • 相关文献

参考文献5

  • 1Rolewicz S. Metric Linear Spaces[M]. Warszawa: PWN-Polish Scientific Publishers, 1985.
  • 2Wilansky A. Modern Metheds in Topological Vector Spaces[M]. New York: McGraw-Hill, Inc, 1978.
  • 3Schaefer H H. Topological Vector Spaces[M]. New York: Spinger-Verlag, 1971.
  • 4Kalton N J, Peck N T, Roberts J W. An F-space Sampler[M]. London: Cambridge University Press 1984.
  • 5Holmes R B. Geometric Functional Analysis and Its Applications[M]. New York: Springer-Verlag 1975.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部