摘要
对任意正整数n,Smarandache函数U(n)、V(n)定义为:U(1)=V(1)=1,n>1时,若它的标准分解式是n=p_1^(α_1)p_2^(α_2)…p_r^(α_r),U(n)=1{α_1·p_1α_2·p_2,…,α_r·p_r};V(n)={α_1·p_1,α_2·p_2,…,α_r·p_r}.研究了这两Smarandache函数U(n)与V^m(n)的值分布,并用初等方法及素数分布定理得到了几个较强的渐近公式.
for any positive integer n, define U(1) = V(1) = 1 And U(n) = max,1≤i≤r{a1·p1,a2·p2,…,ar·pr} and V(n)=max,1≤i≤r{a1·p1,a2·p2,…,ar·pr}, wherea1,p1,a2,p2, satisfy n = p1 a1 p2 a2 ...pr^ar which decomposes n into prime powers, The main purpose of this paper is using the elementary methods and the prime distribution theory to study the value distribution properties of the Smarandache function U(n) and Vm(n), and give two sharper asymptotic formulae for it.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第24期252-255,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(10671155)
陕西省自然科学基金项目(SJ08A28)